This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: STANDALONE
// https://atcoder.jp/contests/ddcc2019-final/tasks/ddcc2019_final_d
#include <sstream>
#include <string>
#include <cassert>
#include <vector>
#include "src/LinearAlgebra/Matrix.hpp"
using namespace std;
bool test(int (*solve)(stringstream&, stringstream&), string in, string expected) {
stringstream scin(in), scout;
solve(scin, scout);
return scout.str() == expected;
}
namespace TEST {
signed main(stringstream& scin, stringstream& scout) {
using Vec= Vector<unsigned>;
using Mat= Matrix<unsigned>;
string S;
scin >> S;
int N= S.length();
vector<Vec> a(N + 1, Vec(6)), b(N + 1, Vec(6));
Mat A= Mat::identity(6), B= Mat::identity(6);
a[0]= {0, 0, 0, 0, 0, 1}, b[0]= {1, 0, 0, 0, 0, 0};
for (int i= 0; i < N; ++i) {
if (S[i] == 'D') {
for (int j= 0; j < 1; ++j) A[1][j]+= A[0][j];
for (int j= 1; j < 6; ++j) B[j][0]-= B[j][1];
} else if (S[i] == 'I') {
for (int j= 0; j < 2; ++j) A[2][j]+= A[1][j];
for (int j= 2; j < 6; ++j) B[j][1]-= B[j][2];
} else if (S[i] == 'S') {
for (int j= 0; j < 3; ++j) A[3][j]+= A[2][j];
for (int j= 3; j < 6; ++j) B[j][2]-= B[j][3];
} else if (S[i] == 'C') {
for (int j= 0; j < 4; ++j) A[4][j]+= A[3][j];
for (int j= 4; j < 6; ++j) B[j][3]-= B[j][4];
} else {
for (int j= 0; j < 5; ++j) A[5][j]+= A[4][j];
for (int j= 5; j < 6; ++j) B[j][4]-= B[j][5];
}
for (int j= 0; j < 6; ++j) a[i + 1][j]= A[5][j];
for (int j= 0; j < 6; ++j) b[i + 1][j]= B[j][0];
}
int Q;
scin >> Q;
while (Q--) {
int L, R;
scin >> L >> R;
scout << dot(a[R], b[L - 1]) << '\n';
}
return 0;
}
}
signed main() {
assert(test(TEST::main, "DDDDDDISCOOOOOO\n7\n6 10\n5 11\n4 12\n3 13\n2 14\n1 15\n1 8\n", "1\n4\n9\n16\n25\n36\n0\n"));
assert(test(TEST::main, "DDDIIISSSCCCOOO\n12\n1 12\n1 13\n1 14\n1 15\n2 12\n2 13\n2 14\n2 15\n3 13\n3 14\n3 15\n4 15\n", "0\n81\n162\n243\n0\n54\n108\n162\n27\n54\n81\n0\n"));
return 0;
}
#line 1 "test/sample_test/ddcc2019_final_d.test.cpp"
// competitive-verifier: STANDALONE
// https://atcoder.jp/contests/ddcc2019-final/tasks/ddcc2019_final_d
#include <sstream>
#include <string>
#include <cassert>
#include <vector>
#line 2 "src/LinearAlgebra/Vector.hpp"
#include <cstdint>
#include <iostream>
#include <valarray>
namespace _la_internal {
using namespace std;
template <class R> struct Vector {
valarray<R> dat;
Vector()= default;
Vector(size_t n): dat(n) {}
Vector(size_t n, const R &v): dat(v, n) {}
Vector(const initializer_list<R> &v): dat(v) {}
R &operator[](int i) { return dat[i]; }
const R &operator[](int i) const { return dat[i]; }
bool operator==(const Vector &r) const {
if (dat.size() != r.dat.size()) return false;
for (int i= dat.size(); i--;)
if (dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Vector &r) const { return !(*this == r); }
explicit operator bool() const { return dat.size(); }
Vector operator-() const { return Vector(dat.size())-= *this; }
Vector &operator+=(const Vector &r) { return dat+= r.dat, *this; }
Vector &operator-=(const Vector &r) { return dat-= r.dat, *this; }
Vector &operator*=(const R &r) { return dat*= r, *this; }
Vector operator+(const Vector &r) const { return Vector(*this)+= r; }
Vector operator-(const Vector &r) const { return Vector(*this)-= r; }
Vector operator*(const R &r) const { return Vector(*this)*= r; }
size_t size() const { return dat.size(); }
friend R dot(const Vector<R> &a, const Vector<R> &b) { return assert(a.size() == b.size()), (a.dat * b.dat).sum(); }
};
using u128= __uint128_t;
using u64= uint64_t;
using u8= uint8_t;
class Ref {
u128 *ref;
u8 i;
public:
Ref(u128 *ref, u8 i): ref(ref), i(i) {}
Ref &operator=(const Ref &r) { return *this= bool(r); }
Ref &operator=(bool b) { return *ref&= ~(u128(1) << i), *ref|= u128(b) << i, *this; }
Ref &operator|=(bool b) { return *ref|= u128(b) << i, *this; }
Ref &operator&=(bool b) { return *ref&= ~(u128(!b) << i), *this; }
Ref &operator^=(bool b) { return *ref^= u128(b) << i, *this; }
operator bool() const { return (*ref >> i) & 1; }
};
template <> class Vector<bool> {
size_t n;
public:
valarray<u128> dat;
Vector(): n(0) {}
Vector(size_t n): n(n), dat((n + 127) >> 7) {}
Vector(size_t n, bool b): n(n), dat(-u128(b), (n + 127) >> 7) {
if (int k= n & 127; k) dat[dat.size() - 1]&= (u128(1) << k) - 1;
}
Vector(const initializer_list<bool> &v): n(v.size()), dat((n + 127) >> 7) {
int i= 0;
for (bool b: v) dat[i >> 7]|= u128(b) << (i & 127), ++i;
}
Ref operator[](int i) { return {begin(dat) + (i >> 7), u8(i & 127)}; }
bool operator[](int i) const { return (dat[i >> 7] >> (i & 127)) & 1; }
bool operator==(const Vector &r) const {
if (dat.size() != r.dat.size()) return false;
for (int i= dat.size(); i--;)
if (dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Vector &r) const { return !(*this == r); }
explicit operator bool() const { return n; }
Vector operator-() const { return Vector(*this); }
Vector &operator+=(const Vector &r) { return dat^= r.dat, *this; }
Vector &operator-=(const Vector &r) { return dat^= r.dat, *this; }
Vector &operator*=(bool b) { return dat*= b, *this; }
Vector operator+(const Vector &r) const { return Vector(*this)+= r; }
Vector operator-(const Vector &r) const { return Vector(*this)-= r; }
Vector operator*(bool b) const { return Vector(*this)*= b; }
size_t size() const { return n; }
friend bool dot(const Vector<bool> &a, const Vector<bool> &b) {
assert(a.size() == b.size());
u128 v= 0;
for (int i= a.dat.size(); i--;) v^= a.dat[i] & b.dat[i];
return __builtin_parityll(v >> 64) ^ __builtin_parityll(u64(v));
}
};
template <class R> Vector<R> operator*(const R &r, const Vector<R> &v) { return v * r; }
template <class R> ostream &operator<<(ostream &os, const Vector<R> &v) {
os << '[';
for (int _= 0, __= v.size(); _ < __; ++_) os << (_ ? ", " : "") << v[_];
return os << ']';
}
}
using _la_internal::Vector;
#line 5 "src/LinearAlgebra/Matrix.hpp"
namespace _la_internal {
template <class R, class D> struct Mat {
Mat(): W(0) {}
Mat(size_t h, size_t w): W(w), dat(h * w) {}
Mat(size_t h, size_t w, R v): W(w), dat(v, h * w) {}
Mat(initializer_list<initializer_list<R>> v): W(v.size() ? v.begin()->size() : 0), dat(v.size() * W) {
auto it= begin(dat);
for (const auto &r: v) {
assert(r.size() == W);
for (R x: r) *it++= x;
}
}
size_t width() const { return W; }
size_t height() const { return W ? dat.size() / W : 0; }
auto operator[](int i) { return begin(dat) + i * W; }
auto operator[](int i) const { return begin(dat) + i * W; }
protected:
size_t W;
valarray<R> dat;
void add(const Mat &r) { assert(dat.size() == r.dat.size()), assert(W == r.W), dat+= r.dat; }
D mul(const Mat &r) const {
const size_t h= height(), w= r.W, l= W;
assert(l == r.height());
D ret(h, w);
auto a= begin(dat);
auto c= begin(ret.dat);
for (int i= h; i--; c+= w) {
auto b= begin(r.dat);
for (int k= l; k--; ++a) {
auto d= c;
auto v= *a;
for (int j= w; j--; ++b, ++d) *d+= v * *b;
}
}
return ret;
}
Vector<R> mul(const Vector<R> &r) const {
assert(W == r.size());
const size_t h= height();
Vector<R> ret(h);
auto a= begin(dat);
for (size_t i= 0; i < h; ++i)
for (size_t k= 0; k < W; ++k, ++a) ret[i]+= *a * r[k];
return ret;
}
};
template <class D> struct Mat<bool, D> {
struct Array {
u128 *bg;
Array(u128 *it): bg(it) {}
Ref operator[](int i) { return Ref{bg + (i >> 7), u8(i & 127)}; }
bool operator[](int i) const { return (bg[i >> 7] >> (i & 127)) & 1; }
};
struct ConstArray {
const u128 *bg;
ConstArray(const u128 *it): bg(it) {}
bool operator[](int i) const { return (bg[i >> 7] >> (i & 127)) & 1; }
};
Mat(): H(0), W(0), m(0) {}
Mat(size_t h, size_t w): H(h), W(w), m((w + 127) >> 7), dat(h * m) {}
Mat(size_t h, size_t w, bool b): H(h), W(w), m((w + 127) >> 7), dat(-u128(b), h * m) {
if (size_t i= h, k= w & 127; k)
for (u128 s= (u128(1) << k) - 1; i--;) dat[i * m]&= s;
}
Mat(const initializer_list<initializer_list<bool>> &v): H(v.size()), W(H ? v.begin()->size() : 0), m((W + 127) >> 7), dat(H * m) {
auto it= begin(dat);
for (const auto &r: v) {
assert(r.size() == W);
int i= 0;
for (bool b: r) it[i >> 7]|= u128(b) << (i & 127), ++i;
it+= m;
}
}
size_t width() const { return W; }
size_t height() const { return H; }
Array operator[](int i) { return {begin(dat) + i * m}; }
ConstArray operator[](int i) const { return {begin(dat) + i * m}; }
ConstArray get(int i) const { return {begin(dat) + i * m}; }
protected:
size_t H, W, m;
valarray<u128> dat;
void add(const Mat &r) { assert(H == r.H), assert(W == r.W), dat^= r.dat; }
D mul(const Mat &r) const {
assert(W == r.H);
D ret(H, r.W);
valarray<u128> tmp(r.m << 8);
auto y= begin(r.dat);
for (size_t l= 0; l < W; l+= 8) {
auto t= begin(tmp) + r.m;
for (int i= 0, n= min<size_t>(8, W - l); i < n; ++i, y+= r.m) {
auto u= begin(tmp);
for (int s= 1 << i; s--;) {
auto z= y;
for (int j= r.m; j--; ++u, ++t, ++z) *t= *u ^ *z;
}
}
auto a= begin(dat) + (l >> 7);
auto c= begin(ret.dat);
for (int i= H; i--; a+= m) {
auto u= begin(tmp) + ((*a >> (l & 127)) & 255) * r.m;
for (int j= r.m; j--; ++c, ++u) *c^= *u;
}
}
return ret;
}
Vector<bool> mul(const Vector<bool> &r) const {
assert(W == r.size());
Vector<bool> ret(H);
auto a= begin(dat);
for (size_t i= 0; i < H; ++i) {
u128 v= 0;
for (size_t j= 0; j < m; ++j, ++a) v^= *a & r.dat[j];
ret[i]= __builtin_parityll(v >> 64) ^ __builtin_parityll(u64(v));
}
return ret;
}
};
template <class R> struct Matrix: public Mat<R, Matrix<R>> {
using Mat<R, Matrix<R>>::Mat;
explicit operator bool() const { return this->W; }
static Matrix identity(int n) {
Matrix ret(n, n);
for (; n--;) ret[n][n]= R(true);
return ret;
}
Matrix submatrix(const vector<int> &rows, const vector<int> &cols) const {
Matrix ret(rows.size(), cols.size());
for (int i= rows.size(); i--;)
for (int j= cols.size(); j--;) ret[i][j]= (*this)[rows[i]][cols[j]];
return ret;
}
Matrix submatrix_rm(vector<int> rows, vector<int> cols) const {
sort(begin(rows), end(rows)), sort(begin(cols), end(cols)), rows.erase(unique(begin(rows), end(rows)), end(rows)), cols.erase(unique(begin(cols), end(cols)), end(cols));
const int H= this->height(), W= this->width(), n= rows.size(), m= cols.size();
vector<int> rs(H - n), cs(W - m);
for (int i= 0, j= 0, k= 0; i < H; ++i)
if (j < n && rows[j] == i) ++j;
else rs[k++]= i;
for (int i= 0, j= 0, k= 0; i < W; ++i)
if (j < m && cols[j] == i) ++j;
else cs[k++]= i;
return submatrix(rs, cs);
}
bool operator==(const Matrix &r) const {
if (this->width() != r.width() || this->height() != r.height()) return false;
for (int i= this->dat.size(); i--;)
if (this->dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Matrix &r) const { return !(*this == r); }
Matrix &operator*=(const Matrix &r) { return *this= this->mul(r); }
Matrix operator*(const Matrix &r) const { return this->mul(r); }
Matrix &operator*=(R r) { return this->dat*= r, *this; }
template <class T> Matrix operator*(T r) const {
static_assert(is_convertible_v<T, R>);
return Matrix(*this)*= r;
}
Matrix &operator+=(const Matrix &r) { return this->add(r), *this; }
Matrix operator+(const Matrix &r) const { return Matrix(*this)+= r; }
Vector<R> operator*(const Vector<R> &r) const { return this->mul(r); }
Vector<R> operator()(const Vector<R> &r) const { return this->mul(r); }
Matrix pow(uint64_t k) const {
size_t W= this->width();
assert(W == this->height());
for (Matrix ret= identity(W), b= *this;; b*= b)
if (k & 1 ? ret*= b, !(k>>= 1) : !(k>>= 1)) return ret;
}
};
template <class R, class T> Matrix<R> operator*(const T &r, const Matrix<R> &m) { return m * r; }
template <class R> ostream &operator<<(ostream &os, const Matrix<R> &m) {
os << "\n[";
for (int i= 0, h= m.height(); i < h; os << ']', ++i) {
if (i) os << "\n ";
os << '[';
for (int j= 0, w= m.width(); j < w; ++j) os << (j ? ", " : "") << m[i][j];
}
return os << ']';
}
template <class K> static bool is_zero(K x) {
if constexpr (is_floating_point_v<K>) return abs(x) < 1e-8;
else return x == K();
}
}
using _la_internal::Matrix;
#line 9 "test/sample_test/ddcc2019_final_d.test.cpp"
using namespace std;
bool test(int (*solve)(stringstream&, stringstream&), string in, string expected) {
stringstream scin(in), scout;
solve(scin, scout);
return scout.str() == expected;
}
namespace TEST {
signed main(stringstream& scin, stringstream& scout) {
using Vec= Vector<unsigned>;
using Mat= Matrix<unsigned>;
string S;
scin >> S;
int N= S.length();
vector<Vec> a(N + 1, Vec(6)), b(N + 1, Vec(6));
Mat A= Mat::identity(6), B= Mat::identity(6);
a[0]= {0, 0, 0, 0, 0, 1}, b[0]= {1, 0, 0, 0, 0, 0};
for (int i= 0; i < N; ++i) {
if (S[i] == 'D') {
for (int j= 0; j < 1; ++j) A[1][j]+= A[0][j];
for (int j= 1; j < 6; ++j) B[j][0]-= B[j][1];
} else if (S[i] == 'I') {
for (int j= 0; j < 2; ++j) A[2][j]+= A[1][j];
for (int j= 2; j < 6; ++j) B[j][1]-= B[j][2];
} else if (S[i] == 'S') {
for (int j= 0; j < 3; ++j) A[3][j]+= A[2][j];
for (int j= 3; j < 6; ++j) B[j][2]-= B[j][3];
} else if (S[i] == 'C') {
for (int j= 0; j < 4; ++j) A[4][j]+= A[3][j];
for (int j= 4; j < 6; ++j) B[j][3]-= B[j][4];
} else {
for (int j= 0; j < 5; ++j) A[5][j]+= A[4][j];
for (int j= 5; j < 6; ++j) B[j][4]-= B[j][5];
}
for (int j= 0; j < 6; ++j) a[i + 1][j]= A[5][j];
for (int j= 0; j < 6; ++j) b[i + 1][j]= B[j][0];
}
int Q;
scin >> Q;
while (Q--) {
int L, R;
scin >> L >> R;
scout << dot(a[R], b[L - 1]) << '\n';
}
return 0;
}
}
signed main() {
assert(test(TEST::main, "DDDDDDISCOOOOOO\n7\n6 10\n5 11\n4 12\n3 13\n2 14\n1 15\n1 8\n", "1\n4\n9\n16\n25\n36\n0\n"));
assert(test(TEST::main, "DDDIIISSSCCCOOO\n12\n1 12\n1 13\n1 14\n1 15\n2 12\n2 13\n2 14\n2 15\n3 13\n3 14\n3 15\n4 15\n", "0\n81\n162\n243\n0\n54\n108\n162\n27\n54\n81\n0\n"));
return 0;
}