This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: STANDALONE
// https://atcoder.jp/contests/abc276/tasks/abc276_h
// sp judge
#include <sstream>
#include <string>
#include <cassert>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include "src/LinearAlgebra/LU_Decomposition.hpp"
using namespace std;
bool test(int (*solve)(stringstream&, stringstream&), string in, string expected) {
stringstream scin(in), scout;
solve(scin, scout);
if (expected == "No\n") return scout.str() == expected;
string yes;
scout >> yes;
if (yes != "Yes") return false;
stringstream scin2(in);
int N, Q;
scin2 >> N >> Q;
vector X(N, vector<int>(N));
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout >> X[i][j];
while (Q--) {
int a, b, c, d, e;
scin2 >> a >> b >> c >> d >> e;
int x= 1;
for (int i= a; i <= b; ++i)
for (int j= c; j <= d; ++j) (x*= X[i - 1][j - 1])%= 3;
if (x != e) return false;
}
return true;
}
namespace TEST {
signed main(stringstream& scin, stringstream& scout) {
int N, Q;
scin >> N >> Q;
int a[Q], b[Q], c[Q], d[Q], e[Q];
for (int i= 0; i < Q; ++i) scin >> a[i] >> b[i] >> c[i] >> d[i] >> e[i], --a[i], --b[i], --c[i], --d[i];
unordered_map<int, int> mp;
vector<int> pm;
auto id= [&](int x) -> int {
if (auto it= mp.find(x); it == mp.end()) return mp[x]= pm.size(), pm.push_back(x), pm.size() - 1;
else return it->second;
};
Matrix<int> cum(N, N);
int m= 0;
for (int i= 0; i < Q; ++i) {
if (!e[i]) continue;
++cum[a[i]][c[i]];
if (b[i] + 1 < N) --cum[b[i] + 1][c[i]];
if (d[i] + 1 < N) --cum[a[i]][d[i] + 1];
if (b[i] + 1 < N && d[i] + 1 < N) ++cum[b[i] + 1][d[i] + 1];
id(b[i] * N + d[i]);
if (a[i]) id((a[i] - 1) * N + d[i]);
if (c[i]) id(b[i] * N + (c[i] - 1));
if (a[i] && c[i]) id((a[i] - 1) * N + (c[i] - 1));
++m;
}
if (m == 0) {
scout << "Yes\n";
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout << 0 << " \n"[j + 1 == N];
return 0;
}
for (int i= 0; i < N; ++i)
for (int j= 1; j < N; ++j) cum[i][j]+= cum[i][j - 1];
for (int i= 1; i < N; ++i)
for (int j= 0; j < N; ++j) cum[i][j]+= cum[i - 1][j];
for (int i= N; i--;)
for (int j= N; j--;) cum[i][j]= !!cum[i][j];
auto f= cum;
for (int i= 0; i < N; ++i)
for (int j= 1; j < N; ++j) cum[i][j]+= cum[i][j - 1];
for (int i= 1; i < N; ++i)
for (int j= 0; j < N; ++j) cum[i][j]+= cum[i - 1][j];
int n= pm.size();
Vector<bool> r(m);
Matrix<bool> A(m, n);
for (int i= 0, j= 0; i < Q; ++i) {
if (!e[i]) {
int cnt= cum[b[i]][d[i]];
if (a[i]) cnt-= cum[a[i] - 1][d[i]];
if (c[i]) cnt-= cum[b[i]][c[i] - 1];
if (a[i] && c[i]) cnt+= cum[a[i] - 1][c[i] - 1];
if (cnt == (b[i] - a[i] + 1) * (d[i] - c[i] + 1)) return scout << "No" << '\n', 0;
continue;
}
A[j][id(b[i] * N + d[i])]= 1;
if (a[i]) A[j][id((a[i] - 1) * N + d[i])]= 1;
if (c[i]) A[j][id(b[i] * N + (c[i] - 1))]= 1;
if (a[i] && c[i]) A[j][id((a[i] - 1) * N + (c[i] - 1))]= 1;
r[j]= e[i] - 1;
++j;
}
auto x= LU_Decomposition(A).linear_equations(r);
if (!x) return scout << "No" << '\n', 0;
scout << "Yes" << '\n';
Matrix<bool> X(N, N);
for (int k= n; k--;) X[pm[k] / N][pm[k] % N]= x[k];
for (int i= N; i-- > 1;)
for (int j= N; j--;) X[i][j]^= X[i - 1][j];
for (int i= N; i--;)
for (int j= N; j-- > 1;) X[i][j]^= X[i][j - 1];
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout << (f[i][j] ? X[i][j] + 1 : 0) << " \n"[j + 1 == N];
return 0;
}
}
signed main() {
assert(test(TEST::main, "2 3\n1 1 1 2 0\n1 2 2 2 1\n2 2 1 2 2\n", "Yes\n0 2\n1 2\n"));
assert(test(TEST::main, "4 4\n1 4 1 4 0\n1 4 1 4 1\n1 4 1 4 2\n1 4 1 4 0\n", "No\n"));
return 0;
}
#line 1 "test/sample_test/abc276_ex.test.cpp"
// competitive-verifier: STANDALONE
// https://atcoder.jp/contests/abc276/tasks/abc276_h
// sp judge
#include <sstream>
#include <string>
#include <cassert>
#include <algorithm>
#include <vector>
#include <unordered_map>
#line 2 "src/LinearAlgebra/LU_Decomposition.hpp"
#include <type_traits>
#include <numeric>
#line 2 "src/LinearAlgebra/Vector.hpp"
#include <cstdint>
#include <iostream>
#include <valarray>
namespace _la_internal {
using namespace std;
template <class R> struct Vector {
valarray<R> dat;
Vector()= default;
Vector(size_t n): dat(n) {}
Vector(size_t n, const R &v): dat(v, n) {}
Vector(const initializer_list<R> &v): dat(v) {}
R &operator[](int i) { return dat[i]; }
const R &operator[](int i) const { return dat[i]; }
bool operator==(const Vector &r) const {
if (dat.size() != r.dat.size()) return false;
for (int i= dat.size(); i--;)
if (dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Vector &r) const { return !(*this == r); }
explicit operator bool() const { return dat.size(); }
Vector operator-() const { return Vector(dat.size())-= *this; }
Vector &operator+=(const Vector &r) { return dat+= r.dat, *this; }
Vector &operator-=(const Vector &r) { return dat-= r.dat, *this; }
Vector &operator*=(const R &r) { return dat*= r, *this; }
Vector operator+(const Vector &r) const { return Vector(*this)+= r; }
Vector operator-(const Vector &r) const { return Vector(*this)-= r; }
Vector operator*(const R &r) const { return Vector(*this)*= r; }
size_t size() const { return dat.size(); }
friend R dot(const Vector<R> &a, const Vector<R> &b) { return assert(a.size() == b.size()), (a.dat * b.dat).sum(); }
};
using u128= __uint128_t;
using u64= uint64_t;
using u8= uint8_t;
class Ref {
u128 *ref;
u8 i;
public:
Ref(u128 *ref, u8 i): ref(ref), i(i) {}
Ref &operator=(const Ref &r) { return *this= bool(r); }
Ref &operator=(bool b) { return *ref&= ~(u128(1) << i), *ref|= u128(b) << i, *this; }
Ref &operator|=(bool b) { return *ref|= u128(b) << i, *this; }
Ref &operator&=(bool b) { return *ref&= ~(u128(!b) << i), *this; }
Ref &operator^=(bool b) { return *ref^= u128(b) << i, *this; }
operator bool() const { return (*ref >> i) & 1; }
};
template <> class Vector<bool> {
size_t n;
public:
valarray<u128> dat;
Vector(): n(0) {}
Vector(size_t n): n(n), dat((n + 127) >> 7) {}
Vector(size_t n, bool b): n(n), dat(-u128(b), (n + 127) >> 7) {
if (int k= n & 127; k) dat[dat.size() - 1]&= (u128(1) << k) - 1;
}
Vector(const initializer_list<bool> &v): n(v.size()), dat((n + 127) >> 7) {
int i= 0;
for (bool b: v) dat[i >> 7]|= u128(b) << (i & 127), ++i;
}
Ref operator[](int i) { return {begin(dat) + (i >> 7), u8(i & 127)}; }
bool operator[](int i) const { return (dat[i >> 7] >> (i & 127)) & 1; }
bool operator==(const Vector &r) const {
if (dat.size() != r.dat.size()) return false;
for (int i= dat.size(); i--;)
if (dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Vector &r) const { return !(*this == r); }
explicit operator bool() const { return n; }
Vector operator-() const { return Vector(*this); }
Vector &operator+=(const Vector &r) { return dat^= r.dat, *this; }
Vector &operator-=(const Vector &r) { return dat^= r.dat, *this; }
Vector &operator*=(bool b) { return dat*= b, *this; }
Vector operator+(const Vector &r) const { return Vector(*this)+= r; }
Vector operator-(const Vector &r) const { return Vector(*this)-= r; }
Vector operator*(bool b) const { return Vector(*this)*= b; }
size_t size() const { return n; }
friend bool dot(const Vector<bool> &a, const Vector<bool> &b) {
assert(a.size() == b.size());
u128 v= 0;
for (int i= a.dat.size(); i--;) v^= a.dat[i] & b.dat[i];
return __builtin_parityll(v >> 64) ^ __builtin_parityll(u64(v));
}
};
template <class R> Vector<R> operator*(const R &r, const Vector<R> &v) { return v * r; }
template <class R> ostream &operator<<(ostream &os, const Vector<R> &v) {
os << '[';
for (int _= 0, __= v.size(); _ < __; ++_) os << (_ ? ", " : "") << v[_];
return os << ']';
}
}
using _la_internal::Vector;
#line 5 "src/LinearAlgebra/Matrix.hpp"
namespace _la_internal {
template <class R, class D> struct Mat {
Mat(): W(0) {}
Mat(size_t h, size_t w): W(w), dat(h * w) {}
Mat(size_t h, size_t w, R v): W(w), dat(v, h * w) {}
Mat(initializer_list<initializer_list<R>> v): W(v.size() ? v.begin()->size() : 0), dat(v.size() * W) {
auto it= begin(dat);
for (const auto &r: v) {
assert(r.size() == W);
for (R x: r) *it++= x;
}
}
size_t width() const { return W; }
size_t height() const { return W ? dat.size() / W : 0; }
auto operator[](int i) { return begin(dat) + i * W; }
auto operator[](int i) const { return begin(dat) + i * W; }
protected:
size_t W;
valarray<R> dat;
void add(const Mat &r) { assert(dat.size() == r.dat.size()), assert(W == r.W), dat+= r.dat; }
D mul(const Mat &r) const {
const size_t h= height(), w= r.W, l= W;
assert(l == r.height());
D ret(h, w);
auto a= begin(dat);
auto c= begin(ret.dat);
for (int i= h; i--; c+= w) {
auto b= begin(r.dat);
for (int k= l; k--; ++a) {
auto d= c;
auto v= *a;
for (int j= w; j--; ++b, ++d) *d+= v * *b;
}
}
return ret;
}
Vector<R> mul(const Vector<R> &r) const {
assert(W == r.size());
const size_t h= height();
Vector<R> ret(h);
auto a= begin(dat);
for (size_t i= 0; i < h; ++i)
for (size_t k= 0; k < W; ++k, ++a) ret[i]+= *a * r[k];
return ret;
}
};
template <class D> struct Mat<bool, D> {
struct Array {
u128 *bg;
Array(u128 *it): bg(it) {}
Ref operator[](int i) { return Ref{bg + (i >> 7), u8(i & 127)}; }
bool operator[](int i) const { return (bg[i >> 7] >> (i & 127)) & 1; }
};
struct ConstArray {
const u128 *bg;
ConstArray(const u128 *it): bg(it) {}
bool operator[](int i) const { return (bg[i >> 7] >> (i & 127)) & 1; }
};
Mat(): H(0), W(0), m(0) {}
Mat(size_t h, size_t w): H(h), W(w), m((w + 127) >> 7), dat(h * m) {}
Mat(size_t h, size_t w, bool b): H(h), W(w), m((w + 127) >> 7), dat(-u128(b), h * m) {
if (size_t i= h, k= w & 127; k)
for (u128 s= (u128(1) << k) - 1; i--;) dat[i * m]&= s;
}
Mat(const initializer_list<initializer_list<bool>> &v): H(v.size()), W(H ? v.begin()->size() : 0), m((W + 127) >> 7), dat(H * m) {
auto it= begin(dat);
for (const auto &r: v) {
assert(r.size() == W);
int i= 0;
for (bool b: r) it[i >> 7]|= u128(b) << (i & 127), ++i;
it+= m;
}
}
size_t width() const { return W; }
size_t height() const { return H; }
Array operator[](int i) { return {begin(dat) + i * m}; }
ConstArray operator[](int i) const { return {begin(dat) + i * m}; }
ConstArray get(int i) const { return {begin(dat) + i * m}; }
protected:
size_t H, W, m;
valarray<u128> dat;
void add(const Mat &r) { assert(H == r.H), assert(W == r.W), dat^= r.dat; }
D mul(const Mat &r) const {
assert(W == r.H);
D ret(H, r.W);
valarray<u128> tmp(r.m << 8);
auto y= begin(r.dat);
for (size_t l= 0; l < W; l+= 8) {
auto t= begin(tmp) + r.m;
for (int i= 0, n= min<size_t>(8, W - l); i < n; ++i, y+= r.m) {
auto u= begin(tmp);
for (int s= 1 << i; s--;) {
auto z= y;
for (int j= r.m; j--; ++u, ++t, ++z) *t= *u ^ *z;
}
}
auto a= begin(dat) + (l >> 7);
auto c= begin(ret.dat);
for (int i= H; i--; a+= m) {
auto u= begin(tmp) + ((*a >> (l & 127)) & 255) * r.m;
for (int j= r.m; j--; ++c, ++u) *c^= *u;
}
}
return ret;
}
Vector<bool> mul(const Vector<bool> &r) const {
assert(W == r.size());
Vector<bool> ret(H);
auto a= begin(dat);
for (size_t i= 0; i < H; ++i) {
u128 v= 0;
for (size_t j= 0; j < m; ++j, ++a) v^= *a & r.dat[j];
ret[i]= __builtin_parityll(v >> 64) ^ __builtin_parityll(u64(v));
}
return ret;
}
};
template <class R> struct Matrix: public Mat<R, Matrix<R>> {
using Mat<R, Matrix<R>>::Mat;
explicit operator bool() const { return this->W; }
static Matrix identity(int n) {
Matrix ret(n, n);
for (; n--;) ret[n][n]= R(true);
return ret;
}
Matrix submatrix(const vector<int> &rows, const vector<int> &cols) const {
Matrix ret(rows.size(), cols.size());
for (int i= rows.size(); i--;)
for (int j= cols.size(); j--;) ret[i][j]= (*this)[rows[i]][cols[j]];
return ret;
}
Matrix submatrix_rm(vector<int> rows, vector<int> cols) const {
sort(begin(rows), end(rows)), sort(begin(cols), end(cols)), rows.erase(unique(begin(rows), end(rows)), end(rows)), cols.erase(unique(begin(cols), end(cols)), end(cols));
const int H= this->height(), W= this->width(), n= rows.size(), m= cols.size();
vector<int> rs(H - n), cs(W - m);
for (int i= 0, j= 0, k= 0; i < H; ++i)
if (j < n && rows[j] == i) ++j;
else rs[k++]= i;
for (int i= 0, j= 0, k= 0; i < W; ++i)
if (j < m && cols[j] == i) ++j;
else cs[k++]= i;
return submatrix(rs, cs);
}
bool operator==(const Matrix &r) const {
if (this->width() != r.width() || this->height() != r.height()) return false;
for (int i= this->dat.size(); i--;)
if (this->dat[i] != r.dat[i]) return false;
return true;
}
bool operator!=(const Matrix &r) const { return !(*this == r); }
Matrix &operator*=(const Matrix &r) { return *this= this->mul(r); }
Matrix operator*(const Matrix &r) const { return this->mul(r); }
Matrix &operator*=(R r) { return this->dat*= r, *this; }
template <class T> Matrix operator*(T r) const {
static_assert(is_convertible_v<T, R>);
return Matrix(*this)*= r;
}
Matrix &operator+=(const Matrix &r) { return this->add(r), *this; }
Matrix operator+(const Matrix &r) const { return Matrix(*this)+= r; }
Vector<R> operator*(const Vector<R> &r) const { return this->mul(r); }
Vector<R> operator()(const Vector<R> &r) const { return this->mul(r); }
Matrix pow(uint64_t k) const {
size_t W= this->width();
assert(W == this->height());
for (Matrix ret= identity(W), b= *this;; b*= b)
if (k & 1 ? ret*= b, !(k>>= 1) : !(k>>= 1)) return ret;
}
};
template <class R, class T> Matrix<R> operator*(const T &r, const Matrix<R> &m) { return m * r; }
template <class R> ostream &operator<<(ostream &os, const Matrix<R> &m) {
os << "\n[";
for (int i= 0, h= m.height(); i < h; os << ']', ++i) {
if (i) os << "\n ";
os << '[';
for (int j= 0, w= m.width(); j < w; ++j) os << (j ? ", " : "") << m[i][j];
}
return os << ']';
}
template <class K> static bool is_zero(K x) {
if constexpr (is_floating_point_v<K>) return abs(x) < 1e-8;
else return x == K();
}
}
using _la_internal::Matrix;
#line 6 "src/LinearAlgebra/LU_Decomposition.hpp"
namespace _la_internal {
template <class K> class LU_Decomposition {
Matrix<K> dat;
vector<size_t> perm, piv;
bool sgn;
size_t psz;
public:
LU_Decomposition(const Matrix<K> &A): dat(A), perm(A.height()), sgn(false), psz(0) {
const size_t h= A.height(), w= A.width();
iota(perm.begin(), perm.end(), 0), piv.resize(min(w, h));
for (size_t c= 0, pos; c < w && psz < h; ++c) {
pos= psz;
if constexpr (is_floating_point_v<K>) {
for (size_t r= psz + 1; r < h; ++r)
if (abs(dat[perm[pos]][c]) < abs(dat[perm[r]][c])) pos= r;
} else if (is_zero(dat[perm[pos]][c]))
for (size_t r= psz + 1; r < h; ++r)
if (!is_zero(dat[perm[r]][c])) pos= r, r= h;
if (is_zero(dat[perm[pos]][c])) continue;
if (pos != psz) sgn= !sgn, swap(perm[pos], perm[psz]);
const auto b= dat[perm[psz]];
for (size_t r= psz + 1, i; r < h; ++r) {
auto a= dat[perm[r]];
K m= a[c] / b[c];
for (a[c]= K(), a[psz]= m, i= c + 1; i < w; ++i) a[i]-= b[i] * m;
}
piv[psz++]= c;
}
}
size_t rank() const { return psz; }
bool is_regular() const { return rank() == dat.height() && rank() == dat.width(); }
K det() const {
assert(dat.height() == dat.width());
K ret= sgn ? -1 : 1;
for (size_t i= dat.width(); i--;) ret*= dat[perm[i]][i];
return ret;
}
vector<Vector<K>> kernel() const {
const size_t w= dat.width(), n= rank();
vector ker(w - n, Vector<K>(w));
for (size_t c= 0, i= 0; c < w; ++c) {
if (i < n && piv[i] == c) ++i;
else {
auto &a= ker[c - i];
a[c]= 1;
for (size_t r= i; r--;) a[r]= -dat[perm[r]][c];
for (size_t j= i, k, r; j--;) {
K x= a[j] / dat[perm[j]][k= piv[j]];
for (a[j]= 0, a[k]= x, r= j; r--;) a[r]-= dat[perm[r]][k] * x;
}
}
}
return ker;
}
Vector<K> linear_equations(const Vector<K> &b) const {
const size_t h= dat.height(), w= dat.width(), n= rank();
assert(h == b.size());
Vector<K> y(h), x(w);
for (size_t c= 0; c < h; ++c)
if (y[c]+= b[perm[c]]; c < w)
for (size_t r= c + 1; r < h; ++r) y[r]-= y[c] * dat[perm[r]][c];
for (size_t i= n; i < h; ++i)
if (!is_zero(y[i])) return Vector<K>(); // no solution
for (size_t i= n, r; i--;)
for (x[piv[i]]= y[i] / dat[perm[i]][piv[i]], r= i; r--;) y[r]-= x[piv[i]] * dat[perm[r]][piv[i]];
return x;
}
Matrix<K> inverse_matrix() const {
if (!is_regular()) return Matrix<K>(); // no solution
const size_t n= dat.width();
Matrix<K> ret(n, n);
for (size_t i= 0; i < n; ++i) {
Vector<K> y(n);
for (size_t c= 0; c < n; ++c)
if (y[c]+= perm[c] == i; !is_zero(y[c]))
for (size_t r= c + 1; r < n; ++r) y[r]-= y[c] * dat[perm[r]][c];
for (size_t j= n; j--;) {
K m= ret[j][i]= y[j] / dat[perm[j]][j];
for (size_t r= j; r--;) y[r]-= m * dat[perm[r]][j];
}
}
return ret;
}
};
void add_upper(u128 *a, const u128 *b, size_t bg, size_t ed) { //[bg,ed)
if (bg >= ed) return;
size_t s= bg >> 7;
a[s]^= b[s] & -(u128(1) << (bg & 127));
for (size_t i= (ed + 127) >> 7; --i > s;) a[i]^= b[i];
}
void add_lower(u128 *a, const u128 *b, size_t ed) { //[0,ed)
size_t s= ed >> 7;
for (a[s]^= b[s] & ((u128(1) << (ed & 127)) - 1); s--;) a[s]^= b[s];
}
void subst_lower(u128 *a, const u128 *b, size_t ed) { //[0,ed)
size_t s= ed >> 7;
for (a[s]= b[s] & ((u128(1) << (ed & 127)) - 1); s--;) a[s]= b[s];
}
bool any1_upper(const u128 *a, size_t bg, size_t ed) { //[bg,ed)
if (bg >= ed) return false;
size_t s= bg >> 7;
if (a[s] & -(u128(1) << (bg & 127))) return true;
for (size_t i= (ed + 127) >> 7; --i > s;)
if (a[i]) return true;
return false;
}
template <> class LU_Decomposition<bool> {
Matrix<bool> dat;
vector<size_t> perm, piv;
size_t psz;
public:
LU_Decomposition(Matrix<bool> A): dat(A.width(), A.height()), perm(A.height()), psz(0) {
const size_t h= A.height(), w= A.width();
iota(perm.begin(), perm.end(), 0), piv.resize(min(w, h));
for (size_t c= 0, pos; c < w && psz < h; ++c) {
for (pos= psz; pos < h; ++pos)
if (A.get(perm[pos])[c]) break;
if (pos == h) continue;
if (pos != psz) swap(perm[pos], perm[psz]);
auto b= A.get(perm[psz]);
for (size_t r= psz + 1; r < h; ++r) {
auto a= A[perm[r]];
if (bool m= a[c]; m) add_upper(a.bg, b.bg, c, w), a[psz]= 1;
}
piv[psz++]= c;
}
for (size_t j= w; j--;)
for (size_t i= h; i--;) dat[j][i]= A.get(perm[i])[j];
}
size_t rank() const { return psz; }
bool is_regular() const { return rank() == dat.height() && rank() == dat.width(); }
bool det() const { return is_regular(); }
vector<Vector<bool>> kernel() const {
const size_t w= dat.height(), n= rank();
vector ker(w - rank(), Vector<bool>(w));
for (size_t c= 0, i= 0; c < w; ++c) {
if (i < n && piv[i] == c) ++i;
else {
auto &a= ker[c - i];
subst_lower(begin(a.dat), dat[c].bg, i), a[c]= 1;
for (size_t j= i, k; j--;) {
bool x= a[j];
if (a[j]= 0, a[k= piv[j]]= x; x) add_lower(begin(a.dat), dat[k].bg, j);
}
}
}
return ker;
}
Vector<bool> linear_equations(const Vector<bool> &b) const {
const size_t h= dat.width(), w= dat.height(), n= rank();
assert(h == b.size());
Vector<bool> y(h), x(w);
for (size_t c= 0; c < h; ++c)
if (y[c]^= b[perm[c]]; c < w && y[c]) add_upper(begin(y.dat), dat[c].bg, c + 1, h);
if (any1_upper(begin(y.dat), n, h)) return Vector<bool>(); // no solution
for (size_t i= n; i--;)
if ((x[piv[i]]= y[i])) add_lower(begin(y.dat), dat[piv[i]].bg, i);
return x;
}
Matrix<bool> inverse_matrix() const {
if (!is_regular()) return Matrix<bool>(); // no solution
const size_t n= dat.width();
Matrix<bool> ret(n, n);
for (size_t i= 0; i < n; ++i) {
Vector<bool> y(n);
for (size_t c= 0; c < n; ++c)
if (y[c]^= perm[c] == i; y[c]) add_upper(begin(y.dat), dat[c].bg, c + 1, n);
for (size_t j= n; j--;)
if ((ret[j][i]= y[j])) add_lower(begin(y.dat), dat[j].bg, j);
}
return ret;
}
};
}
using _la_internal::LU_Decomposition;
#line 12 "test/sample_test/abc276_ex.test.cpp"
using namespace std;
bool test(int (*solve)(stringstream&, stringstream&), string in, string expected) {
stringstream scin(in), scout;
solve(scin, scout);
if (expected == "No\n") return scout.str() == expected;
string yes;
scout >> yes;
if (yes != "Yes") return false;
stringstream scin2(in);
int N, Q;
scin2 >> N >> Q;
vector X(N, vector<int>(N));
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout >> X[i][j];
while (Q--) {
int a, b, c, d, e;
scin2 >> a >> b >> c >> d >> e;
int x= 1;
for (int i= a; i <= b; ++i)
for (int j= c; j <= d; ++j) (x*= X[i - 1][j - 1])%= 3;
if (x != e) return false;
}
return true;
}
namespace TEST {
signed main(stringstream& scin, stringstream& scout) {
int N, Q;
scin >> N >> Q;
int a[Q], b[Q], c[Q], d[Q], e[Q];
for (int i= 0; i < Q; ++i) scin >> a[i] >> b[i] >> c[i] >> d[i] >> e[i], --a[i], --b[i], --c[i], --d[i];
unordered_map<int, int> mp;
vector<int> pm;
auto id= [&](int x) -> int {
if (auto it= mp.find(x); it == mp.end()) return mp[x]= pm.size(), pm.push_back(x), pm.size() - 1;
else return it->second;
};
Matrix<int> cum(N, N);
int m= 0;
for (int i= 0; i < Q; ++i) {
if (!e[i]) continue;
++cum[a[i]][c[i]];
if (b[i] + 1 < N) --cum[b[i] + 1][c[i]];
if (d[i] + 1 < N) --cum[a[i]][d[i] + 1];
if (b[i] + 1 < N && d[i] + 1 < N) ++cum[b[i] + 1][d[i] + 1];
id(b[i] * N + d[i]);
if (a[i]) id((a[i] - 1) * N + d[i]);
if (c[i]) id(b[i] * N + (c[i] - 1));
if (a[i] && c[i]) id((a[i] - 1) * N + (c[i] - 1));
++m;
}
if (m == 0) {
scout << "Yes\n";
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout << 0 << " \n"[j + 1 == N];
return 0;
}
for (int i= 0; i < N; ++i)
for (int j= 1; j < N; ++j) cum[i][j]+= cum[i][j - 1];
for (int i= 1; i < N; ++i)
for (int j= 0; j < N; ++j) cum[i][j]+= cum[i - 1][j];
for (int i= N; i--;)
for (int j= N; j--;) cum[i][j]= !!cum[i][j];
auto f= cum;
for (int i= 0; i < N; ++i)
for (int j= 1; j < N; ++j) cum[i][j]+= cum[i][j - 1];
for (int i= 1; i < N; ++i)
for (int j= 0; j < N; ++j) cum[i][j]+= cum[i - 1][j];
int n= pm.size();
Vector<bool> r(m);
Matrix<bool> A(m, n);
for (int i= 0, j= 0; i < Q; ++i) {
if (!e[i]) {
int cnt= cum[b[i]][d[i]];
if (a[i]) cnt-= cum[a[i] - 1][d[i]];
if (c[i]) cnt-= cum[b[i]][c[i] - 1];
if (a[i] && c[i]) cnt+= cum[a[i] - 1][c[i] - 1];
if (cnt == (b[i] - a[i] + 1) * (d[i] - c[i] + 1)) return scout << "No" << '\n', 0;
continue;
}
A[j][id(b[i] * N + d[i])]= 1;
if (a[i]) A[j][id((a[i] - 1) * N + d[i])]= 1;
if (c[i]) A[j][id(b[i] * N + (c[i] - 1))]= 1;
if (a[i] && c[i]) A[j][id((a[i] - 1) * N + (c[i] - 1))]= 1;
r[j]= e[i] - 1;
++j;
}
auto x= LU_Decomposition(A).linear_equations(r);
if (!x) return scout << "No" << '\n', 0;
scout << "Yes" << '\n';
Matrix<bool> X(N, N);
for (int k= n; k--;) X[pm[k] / N][pm[k] % N]= x[k];
for (int i= N; i-- > 1;)
for (int j= N; j--;) X[i][j]^= X[i - 1][j];
for (int i= N; i--;)
for (int j= N; j-- > 1;) X[i][j]^= X[i][j - 1];
for (int i= 0; i < N; ++i)
for (int j= 0; j < N; ++j) scout << (f[i][j] ? X[i][j] + 1 : 0) << " \n"[j + 1 == N];
return 0;
}
}
signed main() {
assert(test(TEST::main, "2 3\n1 1 1 2 0\n1 2 2 2 1\n2 2 1 2 2\n", "Yes\n0 2\n1 2\n"));
assert(test(TEST::main, "4 4\n1 4 1 4 0\n1 4 1 4 1\n1 4 1 4 2\n1 4 1 4 0\n", "No\n"));
return 0;
}