This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://www.hackerrank.com/contests/w33/challenges/bonnie-and-clyde
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include "src/Graph/Graph.hpp"
#include "src/Graph/block_cut_tree.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int n, m, q;
cin >> n >> m >> q;
Graph g(n, m);
for (int i= 0; i < m; ++i) cin >> g[i], --g[i];
HeavyLightDecomposition bct(block_cut_tree(g));
while (q--) {
int u, v, w;
cin >> u >> v >> w;
--u, --v, --w;
if (!bct.connected(u, w) || !bct.connected(w, v)) cout << "NO";
else {
int tmp= bct.dist(u, w) + bct.dist(w, v) - bct.dist(u, v);
cout << (tmp == 0 || tmp == 2 ? "YES" : "NO");
}
if (q) cout << '\n';
}
return 0;
}
#line 1 "test/hackerrank/bonnie-and-clyde.test.cpp"
// competitive-verifier: PROBLEM https://www.hackerrank.com/contests/w33/challenges/bonnie-and-clyde
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#line 2 "src/Internal/ListRange.hpp"
#include <vector>
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
using std::pair<int, int>::pair;
Edge &operator--() { return --first, --second, *this; }
int to(int v) const { return first ^ second ^ v; }
friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
size_t n;
Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
size_t vertex_size() const { return n; }
size_t edge_size() const { return size(); }
size_t add_vertex() { return n++; }
size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
for (auto [u, v]: *this) a; \
for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
for (int i= size(); i--;) { \
auto [u, v]= (*this)[i]; \
b; \
}
#define _ADJ(a, b) \
vector<int> p(n + 1), c(size() << !dir); \
if (!dir) { \
_ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
} else if (dir > 0) { \
_ADJ_FOR(++p[u], c[--p[u]]= a) \
} else { \
_ADJ_FOR(++p[v], c[--p[v]]= b) \
} \
return {c, p}
CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 3 "src/Graph/block_cut_tree.hpp"
// [0,n) : vertex
// [n,n+b) : block
// deg(v) > 1 -> articulation point
Graph block_cut_tree(const CSRArray<int> &adj) {
const int n= adj.size();
std::vector<int> ord(n), par(n, -2), dat(adj.p.begin(), adj.p.begin() + n);
int k= 0;
for (int s= n, p; s--;)
if (par[s] == -2)
for (par[p= s]= -1; p >= 0;) {
if (dat[p] == adj.p[p]) ord[k++]= p;
if (dat[p] == adj.p[p + 1]) p= par[p];
else if (int q= adj.dat[dat[p]++]; par[q] == -2) par[q]= p, p= q;
}
for (int i= n; i--;) dat[ord[i]]= i;
auto low= dat;
for (int v= n; v--;)
for (int u: adj[v]) low[v]= std::min(low[v], dat[u]);
for (int i= n; i--;)
if (int p= ord[i], pp= par[p]; pp >= 0) low[pp]= std::min(low[pp], low[p]);
Graph ret(k);
for (int p: ord)
if (par[p] >= 0) {
if (int pp= par[p]; low[p] < dat[pp]) ret.add_edge(low[p]= low[pp], p);
else ret.add_vertex(), ret.add_edge(k, pp), ret.add_edge(k, p), low[p]= k++;
}
for (int s= 0; s < n; ++s)
if (!adj[s].size()) ret.add_edge(ret.add_vertex(), s);
return ret;
}
Graph block_cut_tree(const Graph &g) { return block_cut_tree(g.adjacency_vertex(0)); }
#line 2 "src/Graph/HeavyLightDecomposition.hpp"
#include <array>
#include <cassert>
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
std::vector<int> P, PP, D, I, L, R;
public:
HeavyLightDecomposition()= default;
HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
const int n= adj.size();
P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: adj[v= I[i]])
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (int r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v= n; v--;) PP[v]= v;
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: adj[v])
if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
for (int i= n; i--;) I[L[i]]= i;
}
int to_seq(int v) const { return L[v]; }
int to_vertex(int i) const { return I[i]; }
size_t size() const { return P.size(); }
int parent(int v) const { return P[v]; }
int head(int v) const { return PP[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int depth(int v) const { return D[v]; }
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
// half-open interval [l,r)
std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
// sequence of closed intervals [l,r]
std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
std::vector<std::pair<int, int>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
#line 8 "test/hackerrank/bonnie-and-clyde.test.cpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int n, m, q;
cin >> n >> m >> q;
Graph g(n, m);
for (int i= 0; i < m; ++i) cin >> g[i], --g[i];
HeavyLightDecomposition bct(block_cut_tree(g));
while (q--) {
int u, v, w;
cin >> u >> v >> w;
--u, --v, --w;
if (!bct.connected(u, w) || !bct.connected(w, v)) cout << "NO";
else {
int tmp= bct.dist(u, w) + bct.dist(w, v) - bct.dist(u, v);
cout << (tmp == 0 || tmp == 2 ? "YES" : "NO");
}
if (q) cout << '\n';
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 00 |
![]() |
5 ms | 4 MB |
g++-13 | 01 |
![]() |
61 ms | 11 MB |
g++-13 | 02 |
![]() |
61 ms | 11 MB |
g++-13 | 03 |
![]() |
61 ms | 11 MB |
g++-13 | 04 |
![]() |
26 ms | 4 MB |
g++-13 | 05 |
![]() |
22 ms | 4 MB |
g++-13 | 06 |
![]() |
69 ms | 14 MB |
g++-13 | 07 |
![]() |
56 ms | 12 MB |
g++-13 | 08 |
![]() |
43 ms | 7 MB |
g++-13 | 09 |
![]() |
70 ms | 14 MB |
g++-13 | 10 |
![]() |
5 ms | 4 MB |
g++-13 | 11 |
![]() |
47 ms | 14 MB |
g++-13 | 12 |
![]() |
35 ms | 11 MB |
g++-13 | 13 |
![]() |
41 ms | 10 MB |
g++-13 | 14 |
![]() |
53 ms | 11 MB |
clang++-18 | 00 |
![]() |
5 ms | 4 MB |
clang++-18 | 01 |
![]() |
62 ms | 11 MB |
clang++-18 | 02 |
![]() |
61 ms | 11 MB |
clang++-18 | 03 |
![]() |
61 ms | 11 MB |
clang++-18 | 04 |
![]() |
27 ms | 4 MB |
clang++-18 | 05 |
![]() |
22 ms | 4 MB |
clang++-18 | 06 |
![]() |
74 ms | 14 MB |
clang++-18 | 07 |
![]() |
67 ms | 12 MB |
clang++-18 | 08 |
![]() |
43 ms | 7 MB |
clang++-18 | 09 |
![]() |
75 ms | 14 MB |
clang++-18 | 10 |
![]() |
5 ms | 4 MB |
clang++-18 | 11 |
![]() |
45 ms | 14 MB |
clang++-18 | 12 |
![]() |
35 ms | 11 MB |
clang++-18 | 13 |
![]() |
41 ms | 10 MB |
clang++-18 | 14 |
![]() |
53 ms | 11 MB |