This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "src/Graph/block_cut_tree.hpp"
関数名 | 概要 | 計算量 |
---|---|---|
block_cut_tree(CSRArray<int> adj) block_cut_tree(Graph g)
|
無向グラフ g を二点連結成分分解して構築した block-cut-tree (拡張) を返す. 引数は頂点 → 頂点の隣接リスト( CSRArray<int> クラス) もしくは Graph クラス で無向グラフを渡す. 返り値は Graph クラス. |
$O(V+E)$ |
頂点数 $N$ の無向グラフ $g$ の二点連結成分の個数を $C$ とする.
block-cut-tree (拡張) は頂点数が $N+C$ の森である.
https://twitter.com/noshi91/status/1529858538650374144?s=20&t=eznpFbuD9BDhfTb4PplFUg
https://nachiavivias.github.io/cp-library/column/2022/01.html
#pragma once
#include "src/Graph/Graph.hpp"
// [0,n) : vertex
// [n,n+b) : block
// deg(v) > 1 -> articulation point
Graph block_cut_tree(const CSRArray<int> &adj) {
const int n= adj.size();
std::vector<int> ord(n), par(n, -2), dat(adj.p.begin(), adj.p.begin() + n);
int k= 0;
for (int s= n, p; s--;)
if (par[s] == -2)
for (par[p= s]= -1; p >= 0;) {
if (dat[p] == adj.p[p]) ord[k++]= p;
if (dat[p] == adj.p[p + 1]) p= par[p];
else if (int q= adj.dat[dat[p]++]; par[q] == -2) par[q]= p, p= q;
}
for (int i= n; i--;) dat[ord[i]]= i;
auto low= dat;
for (int v= n; v--;)
for (int u: adj[v]) low[v]= std::min(low[v], dat[u]);
for (int i= n; i--;)
if (int p= ord[i], pp= par[p]; pp >= 0) low[pp]= std::min(low[pp], low[p]);
Graph ret(k);
for (int p: ord)
if (par[p] >= 0) {
if (int pp= par[p]; low[p] < dat[pp]) ret.add_edge(low[p]= low[pp], p);
else ret.add_vertex(), ret.add_edge(k, pp), ret.add_edge(k, p), low[p]= k++;
}
for (int s= 0; s < n; ++s)
if (!adj[s].size()) ret.add_edge(ret.add_vertex(), s);
return ret;
}
Graph block_cut_tree(const Graph &g) { return block_cut_tree(g.adjacency_vertex(0)); }
#line 2 "src/Internal/ListRange.hpp"
#include <vector>
#include <iostream>
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
using std::pair<int, int>::pair;
Edge &operator--() { return --first, --second, *this; }
int to(int v) const { return first ^ second ^ v; }
friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
size_t n;
Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
size_t vertex_size() const { return n; }
size_t edge_size() const { return size(); }
size_t add_vertex() { return n++; }
size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
for (auto [u, v]: *this) a; \
for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
for (int i= size(); i--;) { \
auto [u, v]= (*this)[i]; \
b; \
}
#define _ADJ(a, b) \
vector<int> p(n + 1), c(size() << !dir); \
if (!dir) { \
_ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
} else if (dir > 0) { \
_ADJ_FOR(++p[u], c[--p[u]]= a) \
} else { \
_ADJ_FOR(++p[v], c[--p[v]]= b) \
} \
return {c, p}
CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 3 "src/Graph/block_cut_tree.hpp"
// [0,n) : vertex
// [n,n+b) : block
// deg(v) > 1 -> articulation point
Graph block_cut_tree(const CSRArray<int> &adj) {
const int n= adj.size();
std::vector<int> ord(n), par(n, -2), dat(adj.p.begin(), adj.p.begin() + n);
int k= 0;
for (int s= n, p; s--;)
if (par[s] == -2)
for (par[p= s]= -1; p >= 0;) {
if (dat[p] == adj.p[p]) ord[k++]= p;
if (dat[p] == adj.p[p + 1]) p= par[p];
else if (int q= adj.dat[dat[p]++]; par[q] == -2) par[q]= p, p= q;
}
for (int i= n; i--;) dat[ord[i]]= i;
auto low= dat;
for (int v= n; v--;)
for (int u: adj[v]) low[v]= std::min(low[v], dat[u]);
for (int i= n; i--;)
if (int p= ord[i], pp= par[p]; pp >= 0) low[pp]= std::min(low[pp], low[p]);
Graph ret(k);
for (int p: ord)
if (par[p] >= 0) {
if (int pp= par[p]; low[p] < dat[pp]) ret.add_edge(low[p]= low[pp], p);
else ret.add_vertex(), ret.add_edge(k, pp), ret.add_edge(k, p), low[p]= k++;
}
for (int s= 0; s < n; ++s)
if (!adj[s].size()) ret.add_edge(ret.add_vertex(), s);
return ret;
}
Graph block_cut_tree(const Graph &g) { return block_cut_tree(g.adjacency_vertex(0)); }