This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/665
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// より厳しい制約: http://codeforces.com/contest/622/problem/F
#include <iostream>
#include <vector>
#include "src/Math/ModInt.hpp"
#include "src/NumberTheory/enumerate_primes.hpp"
#include "src/Math/sample_points_shift.hpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<int(1e9 + 7)>;
long long n, k;
cin >> n >> k;
auto pws= pow_table<Mint>(k + 1, k);
for (int i= 0; i < k + 1; ++i) pws[i + 1]+= pws[i];
cout << sample_points_shift<Mint>(pws, n) << '\n';
return 0;
}
#line 1 "test/yukicoder/665.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/665
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// より厳しい制約: http://codeforces.com/contest/622/problem/F
#include <iostream>
#include <vector>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/NumberTheory/enumerate_primes.hpp"
#include <algorithm>
#include <cstdint>
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#line 6 "src/Internal/ListRange.hpp"
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 5 "src/NumberTheory/enumerate_primes.hpp"
namespace nt_internal {
using namespace std;
vector<int> ps, lf;
void sieve(int N) {
static int n= 2;
if (n > N) return;
if (lf.resize((N + 1) >> 1); n == 2) ps.push_back(n++);
int M= (N - 1) / 2;
for (int j= 1, e= ps.size(); j < e; ++j) {
int p= ps[j];
if (int64_t(p) * p > N) break;
for (auto k= int64_t(p) * max(n / p / 2 * 2 + 1, p) / 2; k <= M; k+= p) lf[k]+= p * !lf[k];
}
for (; n <= N; n+= 2)
if (!lf[n >> 1]) {
ps.push_back(lf[n >> 1]= n);
for (auto j= int64_t(n) * n / 2; j <= M; j+= n) lf[j]+= n * !lf[j];
}
}
ConstListRange<int> enumerate_primes() { return {ps.cbegin(), ps.cend()}; }
ConstListRange<int> enumerate_primes(int N) {
sieve(N);
return {ps.cbegin(), upper_bound(ps.cbegin(), ps.cend(), N)};
}
int least_prime_factor(int n) { return n & 1 ? sieve(n), lf[(n >> 1)] : 2; }
// f(p,e) := f(p^e)
template <class T, class F> vector<T> completely_multiplicative_table(int N, const F &f) {
vector<T> ret(N + 1);
sieve(N);
for (int n= 3, i= 1; n <= N; n+= 2, ++i) ret[n]= lf[i] == n ? f(n, 1) : ret[lf[i]] * ret[n / lf[i]];
if (int n= 4; 2 <= N)
for (T t= ret[2]= f(2, 1); n <= N; n+= 2) ret[n]= t * ret[n >> 1];
return ret[1]= 1, ret;
}
}
using nt_internal::enumerate_primes, nt_internal::least_prime_factor, nt_internal::completely_multiplicative_table;
// O(N log k / log N + N)
template <class T> static std::vector<T> pow_table(int N, uint64_t k) {
if (k == 0) return std::vector<T>(N + 1, 1);
auto f= [k](int p, int) {
T ret= 1, b= p;
for (auto e= k;; b*= b) {
if (e & 1) ret*= b;
if (!(e>>= 1)) return ret;
}
};
return completely_multiplicative_table<T>(N, f);
}
#line 5 "src/Math/FactorialPrecalculation.hpp"
template <class mod_t> class FactorialPrecalculation {
static_assert(is_modint_v<mod_t>);
static inline std::vector<mod_t> iv, fct, fiv;
public:
static void reset() { iv.clear(), fct.clear(), fiv.clear(); }
static inline mod_t inv(int n) {
assert(0 < n);
if (int k= iv.size(); k <= n) {
if (iv.resize(n + 1); !k) iv[1]= 1, k= 2;
for (unsigned long long mod= mod_t::mod(), q; k <= n; ++k) q= (mod + k - 1) / k, iv[k]= iv[k * q - mod] * q;
}
return iv[n];
}
static inline mod_t fact(int n) {
assert(0 <= n);
if (int k= fct.size(); k <= n) {
if (fct.resize(n + 1); !k) fct[0]= 1, k= 1;
for (; k <= n; ++k) fct[k]= fct[k - 1] * k;
}
return fct[n];
}
static inline mod_t finv(int n) {
assert(0 <= n);
if (int k= fiv.size(); k <= n) {
if (fiv.resize(n + 1); !k) fiv[0]= 1, k= 1;
for (; k <= n; ++k) fiv[k]= fiv[k - 1] * inv(k);
}
return fiv[n];
}
static inline mod_t nPr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r); }
// [x^r] (1 + x)^n
static inline mod_t nCr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r) * finv(r); }
// [x^r] (1 - x)^{-n}
static inline mod_t nHr(int n, int r) { return !r ? mod_t(1) : nCr(n + r - 1, r); }
};
#line 3 "src/Math/sample_points_shift.hpp"
// given: f(0),f(1),...,f(n-1), c output: f(c) O(n)
template <class mod_t> mod_t sample_points_shift(std::vector<mod_t> y, mod_t c) {
using F= FactorialPrecalculation<mod_t>;
int n= y.size();
if ((int)c.val() < n) return y[c.val()];
for (int i= n; i--;) y[i]*= F::finv(i) * F::finv(n - i - 1);
for (int i= 1; i < n; i+= 2) y[n - i - 1]= -y[n - i - 1];
mod_t t= 1, ret= 0;
for (int i= n; i--;) y[i]*= t, t*= c - i;
t= 1;
for (int i= 0; i < n; ++i) ret+= y[i] * t, t*= c - i;
return ret;
}
#line 11 "test/yukicoder/665.test.cpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<int(1e9 + 7)>;
long long n, k;
cin >> n >> k;
auto pws= pow_table<Mint>(k + 1, k);
for (int i= 0; i < k + 1; ++i) pws[i + 1]+= pws[i];
cout << sample_points_shift<Mint>(pws, n) << '\n';
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | sample1.txt |
![]() |
7 ms | 4 MB |
g++-13 | sample2.txt |
![]() |
6 ms | 4 MB |
g++-13 | sample3.txt |
![]() |
6 ms | 4 MB |
g++-13 | sample4.txt |
![]() |
6 ms | 4 MB |
g++-13 | test1.txt |
![]() |
6 ms | 4 MB |
g++-13 | test10.txt |
![]() |
6 ms | 4 MB |
g++-13 | test11.txt |
![]() |
6 ms | 4 MB |
g++-13 | test12.txt |
![]() |
6 ms | 4 MB |
g++-13 | test13.txt |
![]() |
6 ms | 4 MB |
g++-13 | test14.txt |
![]() |
6 ms | 4 MB |
g++-13 | test15.txt |
![]() |
6 ms | 4 MB |
g++-13 | test2.txt |
![]() |
6 ms | 4 MB |
g++-13 | test3.txt |
![]() |
6 ms | 4 MB |
g++-13 | test4.txt |
![]() |
6 ms | 4 MB |
g++-13 | test5.txt |
![]() |
6 ms | 4 MB |
g++-13 | test6.txt |
![]() |
6 ms | 4 MB |
g++-13 | test7.txt |
![]() |
6 ms | 4 MB |
g++-13 | test8.txt |
![]() |
6 ms | 4 MB |
g++-13 | test9.txt |
![]() |
6 ms | 4 MB |
clang++-18 | sample1.txt |
![]() |
7 ms | 4 MB |
clang++-18 | sample2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | sample3.txt |
![]() |
6 ms | 4 MB |
clang++-18 | sample4.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test1.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test10.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test11.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test12.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test13.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test14.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test15.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test3.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test4.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test5.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test6.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test7.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test8.txt |
![]() |
6 ms | 4 MB |
clang++-18 | test9.txt |
![]() |
6 ms | 4 MB |