This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/529
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include "src/Misc/compress.hpp"
#include "src/Graph/Graph.hpp"
#include "src/Graph/IncrementalBridgeConnectivity.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
#include "src/DataStructure/SegmentTree.hpp"
using namespace std;
struct RmaxQ {
using T= pair<long long, int>;
static T ti() { return {-1, -1}; }
static T op(const T &vl, const T &vr) { return vl.first > vr.first ? vl : vr; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, M, Q;
cin >> N >> M >> Q;
Graph g(N, M);
for (int i= 0; i < M; ++i) cin >> g[i], --g[i];
IncrementalBridgeConnectivity ibc(N);
for (auto [u, v]: g) ibc.add_edge(u, v);
vector<int> id(N);
int n= 0;
for (int i= 0; i < N; ++i)
if (i == ibc.leader(i)) id[i]= n++;
Graph tree(n);
for (auto [u, v]: g) {
u= id[ibc.leader(u)], v= id[ibc.leader(v)];
if (u == v) continue;
if (u > v) swap(u, v);
tree.add_edge(u, v);
}
compress(tree);
HeavyLightDecomposition hld(tree);
SegmentTree<RmaxQ> seg(n);
for (int i= n; i--;) {
int v= hld.to_vertex(i);
seg.set(i, {-1, v});
}
priority_queue<long long> pq[n];
for (int v= n; v--;) pq[v].push(-1);
while (Q--) {
int op, x, y;
cin >> op >> x >> y;
if (op == 1) {
int u= id[ibc.leader(--x)];
pq[u].push(y);
int i= hld.to_seq(u);
seg.set(i, make_pair(pq[u].top(), u));
} else {
int u= id[ibc.leader(--x)], v= id[ibc.leader(--y)];
long long ans= -1;
int w;
for (auto [l, r]: hld.path(u, v)) {
auto [a, b]= l < r ? seg.prod(l, r + 1) : seg.prod(r, l + 1);
if (ans < a) ans= a, w= b;
}
cout << ans << '\n';
if (ans != -1) {
pq[w].pop();
int i= hld.to_seq(w);
seg.set(i, make_pair(pq[w].top(), w));
}
}
}
return 0;
}
#line 1 "test/yukicoder/529.HLD.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/529
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#line 4 "src/Misc/compress.hpp"
template <class T> auto compress(std::vector<T> &v) {
return std::sort(v.begin(), v.end()), v.erase(std::unique(v.begin(), v.end()), v.end()), [&v](T x) { return std::lower_bound(v.begin(), v.end(), x) - v.begin(); };
}
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
using std::pair<int, int>::pair;
Edge &operator--() { return --first, --second, *this; }
int to(int v) const { return first ^ second ^ v; }
friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
size_t n;
Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
size_t vertex_size() const { return n; }
size_t edge_size() const { return size(); }
size_t add_vertex() { return n++; }
size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
for (auto [u, v]: *this) a; \
for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
for (int i= size(); i--;) { \
auto [u, v]= (*this)[i]; \
b; \
}
#define _ADJ(a, b) \
vector<int> p(n + 1), c(size() << !dir); \
if (!dir) { \
_ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
} else if (dir > 0) { \
_ADJ_FOR(++p[u], c[--p[u]]= a) \
} else { \
_ADJ_FOR(++p[v], c[--p[v]]= b) \
} \
return {c, p}
CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 2 "src/Graph/IncrementalBridgeConnectivity.hpp"
#include <utility>
#line 4 "src/Graph/IncrementalBridgeConnectivity.hpp"
class IncrementalBridgeConnectivity {
std::vector<int> cp, bp, bbf, z;
int t;
inline int crt(int v) { return cp[v] < 0 ? v : cp[v]= crt(cp[v]); }
inline int par(int v) { return bbf[v] < 0 ? -1 : leader(bbf[v]); }
public:
IncrementalBridgeConnectivity(int n): cp(n, -1), bp(n, -1), bbf(n, -1), z(n), t(0) {}
inline int leader(int v) { return bp[v] < 0 ? v : bp[v]= leader(bp[v]); }
int size(int v) { return -bp[leader(v)]; }
bool two_edge_connected(int u, int v) { return leader(u) == leader(v); }
bool connected(int u, int v) { return crt(u) == crt(v); }
void add_edge(int u, int v) {
int a= crt(u= leader(u)), b= crt(v= leader(v));
if (a == b)
for (++t, a= u, b= v;;) {
if (z[a] == t) {
for (int w: {u, v})
for (int p; w= leader(w), w != a; bp[a]+= bp[w], bp[w]= a, w= p)
if (p= bbf[w], bbf[w]= bbf[a]; bp[a] > bp[w]) std::swap(w, a);
return;
}
if (z[a]= t, a= par(a); b != -1) std::swap(a, b);
}
if (cp[a] < cp[b]) std::swap(u, v), cp[a]+= cp[b], cp[b]= a;
else cp[b]+= cp[a], cp[a]= b;
for (int p; u != -1; u= p) p= par(u), bbf[u]= v, v= u;
}
};
#line 2 "src/Graph/HeavyLightDecomposition.hpp"
#include <array>
#include <cassert>
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
std::vector<int> P, PP, D, I, L, R;
public:
HeavyLightDecomposition()= default;
HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
const int n= adj.size();
P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: adj[v= I[i]])
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (int r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v= n; v--;) PP[v]= v;
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: adj[v])
if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
for (int i= n; i--;) I[L[i]]= i;
}
int to_seq(int v) const { return L[v]; }
int to_vertex(int i) const { return I[i]; }
size_t size() const { return P.size(); }
int parent(int v) const { return P[v]; }
int head(int v) const { return PP[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int depth(int v) const { return D[v]; }
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
// half-open interval [l,r)
std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
// sequence of closed intervals [l,r]
std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
std::vector<std::pair<int, int>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
#line 2 "src/DataStructure/SegmentTree.hpp"
#include <memory>
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
template <class, class= void> struct name: std::false_type {}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
template <class T, class= void> struct name { \
using type= type2; \
}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
using type= type1; \
}
#line 7 "src/DataStructure/SegmentTree.hpp"
template <class M> class SegmentTree {
_DETECT_BOOL(monoid, typename T::T, decltype(&T::op), decltype(&T::ti));
_DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
_DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
using T= typename M::T;
using E= typename nullptr_or_E<M>::type;
int n;
std::unique_ptr<T[]> dat;
std::unique_ptr<E[]> laz;
std::unique_ptr<bool[]> flg;
inline void update(int k) { dat[k]= M::op(dat[k << 1], dat[k << 1 | 1]); }
inline bool map(int k, E x, int sz) {
if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz);
else if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E>) return M::mp(dat[k], x);
else if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz), true;
else return M::mp(dat[k], x), true;
}
inline void prop(int k, E x, int sz) {
if (k < n) {
if (flg[k]) M::cp(laz[k], x);
else laz[k]= x;
flg[k]= true;
if constexpr (monoid_v<M>)
if (!map(k, x, sz)) push(k, sz), update(k);
} else {
if constexpr (monoid_v<M>) map(k, x, 1);
else map(k - n, x, 1);
}
}
inline void push(int k, int sz) {
if (flg[k]) prop(k << 1, laz[k], sz >> 1), prop(k << 1 | 1, laz[k], sz >> 1), flg[k]= false;
}
inline bool valid(int k) const {
int d= __builtin_clz(k) - __builtin_clz(n);
return (n >> d) != k || ((n >> d) << d) == n;
}
public:
SegmentTree() {}
SegmentTree(int n): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
if constexpr (monoid_v<M>) std::fill_n(dat.get(), n << 1, M::ti());
if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
}
template <class F> SegmentTree(int n, const F &init): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
auto a= dat.get() + (n & -monoid_v<M>);
for (int i= 0; i < n; ++i) a[i]= init(i);
if constexpr (monoid_v<M>) build();
if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
}
SegmentTree(int n, T x): SegmentTree(n, [x](int) { return x; }) {}
SegmentTree(const std::vector<T> &v): SegmentTree(v.size(), [&v](int i) { return v[i]; }) {}
SegmentTree(const T *bg, const T *ed): SegmentTree(ed - bg, [bg](int i) { return bg[i]; }) {}
void build() {
static_assert(monoid_v<M>, "\"build\" is not available\n");
for (int i= n; --i;) update(i);
}
inline void unsafe_set(int i, T x) {
static_assert(monoid_v<M>, "\"unsafe_set\" is not available\n");
dat[i + n]= x;
}
inline void set(int i, T x) {
get(i);
if constexpr (monoid_v<M>)
for (dat[i+= n]= x; i>>= 1;) update(i);
else dat[i]= x;
}
inline void mul(int i, T x) {
static_assert(monoid_v<M>, "\"mul\" is not available\n");
set(i, M::op(get(i), x));
}
inline T get(int i) {
i+= n;
if constexpr (dual_v<M>)
for (int j= 31 - __builtin_clz(i); j; --j) push(i >> j, 1 << j);
if constexpr (monoid_v<M>) return dat[i];
else return dat[i - n];
}
inline T operator[](int i) { return get(i); }
inline T prod(int l, int r) {
static_assert(monoid_v<M>, "\"prod\" is not available\n");
l+= n, r+= n;
if constexpr (dual_v<M>) {
for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; --j) push(l >> j, 1 << j);
for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; --j) push(r >> j, 1 << j);
}
T s1= M::ti(), s2= M::ti();
for (; l < r; l>>= 1, r>>= 1) {
if (l & 1) s1= M::op(s1, dat[l++]);
if (r & 1) s2= M::op(dat[--r], s2);
}
return M::op(s1, s2);
}
inline void apply(int l, int r, E x) {
static_assert(dual_v<M>, "\"apply\" is not available\n");
l+= n, r+= n;
for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; j--) push(l >> j, 1 << j);
for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; j--) push(r >> j, 1 << j);
for (int a= l, b= r, sz= 1; a < b; a>>= 1, b>>= 1, sz<<= 1) {
if (a & 1) prop(a++, x, sz);
if (b & 1) prop(--b, x, sz);
}
if constexpr (monoid_v<M>) {
for (int j= __builtin_ctz(l) + 1; l >> j; ++j) update(l >> j);
for (int j= __builtin_ctz(r) + 1; r >> j; ++j) update(r >> j);
}
}
template <class C> int max_right(int l, const C &check) {
static_assert(monoid_v<M>, "\"max_right\" is not available\n");
assert(check(M::ti()));
if (check(prod(l, n))) return n;
T s= M::ti(), t;
int sz= 1;
for (get(l), l+= n;; s= t, ++l) {
while (!(l & 1) && valid(l >> 1)) l>>= 1, sz<<= 1;
if (!check(t= M::op(s, dat[l]))) {
while (l < n) {
if constexpr (dual_v<M>) push(l, sz);
l<<= 1, sz>>= 1;
if (check(t= M::op(s, dat[l]))) s= t, ++l;
}
return l - n;
}
}
}
template <class C> int min_left(int r, const C &check) {
static_assert(monoid_v<M>, "\"min_left\" is not available\n");
assert(check(M::ti()));
if (check(prod(0, r))) return 0;
T s= M::ti(), t;
int sz= 1;
for (get(--r), r+= n;; s= t, --r) {
while (!valid(r)) r= r << 1 | 1, sz>>= 1;
while ((r & 1) && valid(r >> 1)) r>>= 1, sz<<= 1;
if (!check(t= M::op(dat[r], s))) {
while (r < n) {
if constexpr (dual_v<M>) push(r, sz);
r= r << 1 | 1, sz>>= 1;
if (check(t= M::op(dat[r], s))) s= t, --r;
}
return r + 1 - n;
}
}
}
};
#line 13 "test/yukicoder/529.HLD.test.cpp"
using namespace std;
struct RmaxQ {
using T= pair<long long, int>;
static T ti() { return {-1, -1}; }
static T op(const T &vl, const T &vr) { return vl.first > vr.first ? vl : vr; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, M, Q;
cin >> N >> M >> Q;
Graph g(N, M);
for (int i= 0; i < M; ++i) cin >> g[i], --g[i];
IncrementalBridgeConnectivity ibc(N);
for (auto [u, v]: g) ibc.add_edge(u, v);
vector<int> id(N);
int n= 0;
for (int i= 0; i < N; ++i)
if (i == ibc.leader(i)) id[i]= n++;
Graph tree(n);
for (auto [u, v]: g) {
u= id[ibc.leader(u)], v= id[ibc.leader(v)];
if (u == v) continue;
if (u > v) swap(u, v);
tree.add_edge(u, v);
}
compress(tree);
HeavyLightDecomposition hld(tree);
SegmentTree<RmaxQ> seg(n);
for (int i= n; i--;) {
int v= hld.to_vertex(i);
seg.set(i, {-1, v});
}
priority_queue<long long> pq[n];
for (int v= n; v--;) pq[v].push(-1);
while (Q--) {
int op, x, y;
cin >> op >> x >> y;
if (op == 1) {
int u= id[ibc.leader(--x)];
pq[u].push(y);
int i= hld.to_seq(u);
seg.set(i, make_pair(pq[u].top(), u));
} else {
int u= id[ibc.leader(--x)], v= id[ibc.leader(--y)];
long long ans= -1;
int w;
for (auto [l, r]: hld.path(u, v)) {
auto [a, b]= l < r ? seg.prod(l, r + 1) : seg.prod(r, l + 1);
if (ans < a) ans= a, w= b;
}
cout << ans << '\n';
if (ans != -1) {
pq[w].pop();
int i= hld.to_seq(w);
seg.set(i, make_pair(pq[w].top(), w));
}
}
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 01_sample1.txt |
![]() |
8 ms | 3 MB |
g++-13 | 01_sample2.txt |
![]() |
6 ms | 4 MB |
g++-13 | 02_handmake1.txt |
![]() |
6 ms | 4 MB |
g++-13 | 02_handmake2.txt |
![]() |
6 ms | 3 MB |
g++-13 | 03_random1.txt |
![]() |
7 ms | 4 MB |
g++-13 | 03_random2.txt |
![]() |
7 ms | 4 MB |
g++-13 | 03_random3.txt |
![]() |
7 ms | 4 MB |
g++-13 | 03_random4.txt |
![]() |
7 ms | 4 MB |
g++-13 | 04_random1.txt |
![]() |
88 ms | 8 MB |
g++-13 | 04_random2.txt |
![]() |
90 ms | 9 MB |
g++-13 | 04_random3.txt |
![]() |
114 ms | 16 MB |
g++-13 | 04_random4.txt |
![]() |
117 ms | 16 MB |
g++-13 | 05_bomb1.txt |
![]() |
80 ms | 8 MB |
g++-13 | 05_bomb2.txt |
![]() |
103 ms | 21 MB |
g++-13 | 06_bomb1.txt |
![]() |
75 ms | 7 MB |
g++-13 | 07_random1.txt |
![]() |
162 ms | 19 MB |
g++-13 | 07_random2.txt |
![]() |
166 ms | 19 MB |
g++-13 | 99_system_test1.txt |
![]() |
148 ms | 19 MB |
g++-13 | 99_system_test2.txt |
![]() |
142 ms | 19 MB |
g++-13 | 99_system_test3.txt |
![]() |
140 ms | 19 MB |
clang++-18 | 01_sample1.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 01_sample2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 02_handmake1.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 02_handmake2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 03_random1.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 03_random2.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 03_random3.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 03_random4.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 04_random1.txt |
![]() |
87 ms | 8 MB |
clang++-18 | 04_random2.txt |
![]() |
90 ms | 9 MB |
clang++-18 | 04_random3.txt |
![]() |
111 ms | 16 MB |
clang++-18 | 04_random4.txt |
![]() |
114 ms | 16 MB |
clang++-18 | 05_bomb1.txt |
![]() |
82 ms | 8 MB |
clang++-18 | 05_bomb2.txt |
![]() |
97 ms | 21 MB |
clang++-18 | 06_bomb1.txt |
![]() |
79 ms | 7 MB |
clang++-18 | 07_random1.txt |
![]() |
164 ms | 19 MB |
clang++-18 | 07_random2.txt |
![]() |
165 ms | 19 MB |
clang++-18 | 99_system_test1.txt |
![]() |
133 ms | 19 MB |
clang++-18 | 99_system_test2.txt |
![]() |
132 ms | 19 MB |
clang++-18 | 99_system_test3.txt |
![]() |
137 ms | 19 MB |