Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/yukicoder/1649.Seg2D.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1649
// competitive-verifier: TLE 3
// competitive-verifier: MLE 256
#include <iostream>
#include <vector>
#include <array>
#include <tuple>

// rectangle sum だと思うと 制約厳しめ
// N=2*10^5, Q=2*10^5 で 2*4*Q回クエリあるみたいなもん
// TL 3 sec (2500ms ぐらいで通る)

#include "src/DataStructure/SegmentTree_2D.hpp"
#include "src/Math/ModInt.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RSQ {
 using T= array<Mint, 4>;
 static T ti() { return {0, 0, 0, 0}; }
 static T op(const T &l, const T &r) { return {l[0] + r[0], l[1] + r[1], l[2] + r[2], l[3] + r[3]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N;
 cin >> N;
 vector<tuple<int, int, array<Mint, 4>>> v(N);
 for (auto &[x, y, c]: v) cin >> x >> y, c= {1, x, y, Mint(x) * y};
 SegmentTree_2D<int, RSQ> seg(v);
 Mint xs= 0, x2s= 0, ys= 0, y2s= 0;
 for (auto &[x, y, c]: v) xs+= x, x2s+= Mint(x) * x, ys+= y, y2s+= Mint(y) * y;
 Mint ans= (x2s + y2s) * N - xs * xs - ys * ys;
 for (auto &[x, y, c]: v) {
  auto [cnt, xs, ys, xys]= seg.prod(0, x, 0, y);
  ans+= (xys - xs * y - ys * x + cnt * x * y) * 2;
 }
 for (auto &[x, y, c]: v) {
  auto [cnt, xs, ys, xys]= seg.prod(x, 0x7fffffff, 0, y);
  ans-= (xys - xs * y - ys * x + cnt * x * y) * 2;
 }
 cout << ans << '\n';
 return 0;
}
#line 1 "test/yukicoder/1649.Seg2D.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1649
// competitive-verifier: TLE 3
// competitive-verifier: MLE 256
#include <iostream>
#include <vector>
#include <array>
#include <tuple>

// rectangle sum だと思うと 制約厳しめ
// N=2*10^5, Q=2*10^5 で 2*4*Q回クエリあるみたいなもん
// TL 3 sec (2500ms ぐらいで通る)

#line 3 "src/DataStructure/SegmentTree_2D.hpp"
#include <algorithm>
#include <numeric>
#include <map>
#include <set>
#include <cassert>
#line 4 "src/Internal/tuple_traits.hpp"
#include <type_traits>
#include <cstddef>
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
 if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
 if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
 if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
#line 9 "src/DataStructure/SegmentTree_2D.hpp"
template <class pos_t, class M> class SegmentTree_2D {
 using T= typename M::T;
 using Pos= std::array<pos_t, 2>;
 std::vector<pos_t> xs;
 std::vector<Pos> yxs;
 std::vector<int> id, tol;
 std::vector<T> val;
 template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t>>;
 template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t, T>>;
 template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
 int sz;
 inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); }
 inline int y2i(pos_t y) const {
  return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin();
 }
 inline int xy2i(pos_t x, pos_t y) const {
  Pos p{y, x};
  auto it= std::lower_bound(yxs.begin(), yxs.end(), p);
  return assert(p == *it), it - yxs.begin();
 }
 template <bool z, size_t k, class P> inline auto get_(const P &p) {
  if constexpr (z) return std::get<k>(p);
  else return std::get<k>(p.first);
 }
 template <bool z, class XYW> inline void build(const XYW *xyw, int n, const T &v= M::ti()) {
  xs.resize(n);
  for (int i= n; i--;) xs[i]= get_<z, 0>(xyw[i]);
  std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) + xs.size() + 1);
  std::vector<int> ord(n);
  for (int j= n; j--;)
   for (int i= x2i(get_<z, 0>(xyw[j])) + sz; i; i>>= 1) ++id[i + 1];
  for (int i= 1, e= sz + xs.size(); i < e; ++i) id[i + 1]+= id[i];
  val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_<z, 1>(xyw[i]) == get_<z, 1>(xyw[j]) ? get_<z, 0>(xyw[i]) < get_<z, 0>(xyw[j]) : get_<z, 1>(xyw[i]) < get_<z, 1>(xyw[j]); });
  {
   std::vector<int> ptr= id;
   for (int r: ord)
    for (int i= x2i(get_<z, 0>(xyw[r])) + sz, j= -1; i; j= i, i>>= 1) {
     int p= ptr[i]++;
     if constexpr (z) {
      if constexpr (std::tuple_size_v<XYW> == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]);
      else val[id[i + 1] + p]= v;
     } else val[id[i + 1] + p]= xyw[r].second;
     if (j != -1) tol[p + 1]= !(j & 1);
    }
   for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i];
   for (int i= 0, e= sz + xs.size(); i < e; ++i) {
    auto dat= val.begin() + id[i] * 2;
    for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]);
   }
  }
  yxs.resize(n);
  for (int i= n; i--;) yxs[i]= {get_<z, 1>(xyw[ord[i]]), get_<z, 0>(xyw[ord[i]])};
 }
 inline T prdi(int i, int a, int b) const {
  int n= id[i + 1] - id[i];
  T ret= M::ti();
  auto dat= val.begin() + id[i] * 2;
  for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) {
   if (a & 1) ret= M::op(ret, dat[a++]);
   if (b & 1) ret= M::op(dat[--b], ret);
  }
  return ret;
 }
 template <bool z> inline void seti(int i, int j, T v) {
  auto dat= val.begin() + id[i] * 2;
  j+= id[i + 1] - id[i];
  if constexpr (z) dat[j]= v;
  else dat[j]= M::op(dat[j], v);
  for (; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]);
 }
 template <bool z> inline void set_(pos_t x, pos_t y, T v) {
  for (int i= 1, p= xy2i(x, y);;) {
   if (seti<z>(i, p - id[i], v); i >= sz) break;
   if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i;
   else p= id[2 * i + 1] + rc, i= 2 * i + 1;
  }
 }
public:
 template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const P *p, size_t n) { build<1>(p, n); }
 template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const std::vector<P> &p): SegmentTree_2D(p.data(), p.size()) {}
 template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> SegmentTree_2D(const std::set<P> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const P *p, size_t n, const U &v) { build<1>(p, n, v); }
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<P> &p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::set<P> &p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::pair<P, U> *p, size_t n) { build<0>(p, n); }
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<std::pair<P, U>> &p): SegmentTree_2D(p.data(), p.size()) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::map<P, U> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
 // [l,r) x [u,d)
 T prod(pos_t l, pos_t r, pos_t u, pos_t d) const {
  T ret= M::ti();
  int L= x2i(l), R= x2i(r);
  auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void {
   if (c == d || R <= a || b <= L) return;
   if (L <= a && b <= R) return ret= M::op(ret, prdi(i, c, d)), void();
   int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad;
   dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd);
  };
  return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret;
 }
 void set(pos_t x, pos_t y, T v) { set_<1>(x, y, v); }
 void mul(pos_t x, pos_t y, T v) { set_<0>(x, y, v); }
 T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; }
};
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#line 5 "src/Math/mod_inv.hpp"
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
 std::make_signed_t<Uint> x= 1, y= 0, z= 0;
 for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
 return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na {  // mod < 2^32
 u32 mod;
 constexpr MP_Na(): mod(0) {}
 constexpr MP_Na(u32 m): mod(m) {}
 constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
 constexpr inline u32 set(u32 n) const { return n; }
 constexpr inline u32 get(u32 n) const { return n; }
 constexpr inline u32 norm(u32 n) const { return n; }
 constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo {  // mod < 2^32, mod < 2^62
 u_t mod;
 constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
 constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
 constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
 constexpr inline u_t set(u_t n) const { return mul(n, r2); }
 constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
 constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
 constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
 u_t iv, r2;
 static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
 constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br {  // 2^20 < mod <= 2^41
 u64 mod;
 constexpr MP_Br(): mod(0), x(0) {}
 constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
 static constexpr inline u64 set(u64 n) { return n; }
 constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
 u64 x;
 constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
 constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 {  // mod < 2^63, mod < 2^64
 u64 mod;
 constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
 constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
 constexpr inline u64 set(u64 n) const { return n; }
 constexpr inline u64 get(u64 n) const { return n; }
 constexpr inline u64 norm(u64 n) const { return n; }
 constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
 u8 s;
 u64 d, v;
 constexpr inline u64 rem(const u128 &u) const {
  u128 q= (u >> 64) * v + u;
  u64 r= u64(u) - (q >> 64) * d - d;
  if (r > u64(q)) r+= d;
  if (r >= d) r-= d;
  return r;
 }
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
 for (u_t ret= md.set(1);; x= md.mul(x, x))
  if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
 static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
 using Uint= U;
 static constexpr inline auto mod() { return B::md.mod; }
 constexpr MInt(): x(0) {}
 template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
 constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
 constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
 constexpr MInt name const { \
  MInt ret; \
  return ret.x= op, ret; \
 }
 FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
 FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
 FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
 FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
 constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
 constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
 constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
 constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
 constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
 constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
 constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
 constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
 constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
 constexpr inline Uint val() const { return B::md.get(x); }
 friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
 friend istream &operator>>(istream &is, MInt &r) {
  i64 v;
  return is >> v, r= MInt(v), is;
 }
private:
 Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 15 "test/yukicoder/1649.Seg2D.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RSQ {
 using T= array<Mint, 4>;
 static T ti() { return {0, 0, 0, 0}; }
 static T op(const T &l, const T &r) { return {l[0] + r[0], l[1] + r[1], l[2] + r[2], l[3] + r[3]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N;
 cin >> N;
 vector<tuple<int, int, array<Mint, 4>>> v(N);
 for (auto &[x, y, c]: v) cin >> x >> y, c= {1, x, y, Mint(x) * y};
 SegmentTree_2D<int, RSQ> seg(v);
 Mint xs= 0, x2s= 0, ys= 0, y2s= 0;
 for (auto &[x, y, c]: v) xs+= x, x2s+= Mint(x) * x, ys+= y, y2s+= Mint(y) * y;
 Mint ans= (x2s + y2s) * N - xs * xs - ys * ys;
 for (auto &[x, y, c]: v) {
  auto [cnt, xs, ys, xys]= seg.prod(0, x, 0, y);
  ans+= (xys - xs * y - ys * x + cnt * x * y) * 2;
 }
 for (auto &[x, y, c]: v) {
  auto [cnt, xs, ys, xys]= seg.prod(x, 0x7fffffff, 0, y);
  ans-= (xys - xs * y - ys * x + cnt * x * y) * 2;
 }
 cout << ans << '\n';
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 00_sample_01.txt :heavy_check_mark: AC 5 ms 4 MB
g++-13 00_sample_02.txt :heavy_check_mark: AC 4 ms 4 MB
g++-13 01_random_01.txt :heavy_check_mark: AC 10 ms 5 MB
g++-13 01_random_02.txt :heavy_check_mark: AC 9 ms 5 MB
g++-13 01_random_03.txt :heavy_check_mark: AC 9 ms 5 MB
g++-13 01_random_04.txt :heavy_check_mark: AC 9 ms 5 MB
g++-13 01_random_05.txt :heavy_check_mark: AC 10 ms 5 MB
g++-13 02_random_01.txt :heavy_check_mark: AC 1150 ms 146 MB
g++-13 02_random_02.txt :heavy_check_mark: AC 1165 ms 145 MB
g++-13 02_random_03.txt :heavy_check_mark: AC 1171 ms 145 MB
g++-13 02_random_04.txt :heavy_check_mark: AC 1182 ms 145 MB
g++-13 02_random_05.txt :heavy_check_mark: AC 1209 ms 146 MB
g++-13 03_random_01.txt :heavy_check_mark: AC 1168 ms 138 MB
g++-13 03_random_02.txt :heavy_check_mark: AC 1111 ms 138 MB
g++-13 03_random_03.txt :heavy_check_mark: AC 1304 ms 138 MB
g++-13 03_random_04.txt :heavy_check_mark: AC 1271 ms 138 MB
g++-13 03_random_05.txt :heavy_check_mark: AC 1195 ms 138 MB
g++-13 03_random_06.txt :heavy_check_mark: AC 1198 ms 138 MB
g++-13 03_random_07.txt :heavy_check_mark: AC 1035 ms 123 MB
g++-13 03_random_08.txt :heavy_check_mark: AC 1169 ms 130 MB
g++-13 03_random_09.txt :heavy_check_mark: AC 1171 ms 138 MB
g++-13 03_random_10.txt :heavy_check_mark: AC 1261 ms 138 MB
g++-13 04_random_01.txt :heavy_check_mark: AC 1284 ms 146 MB
g++-13 04_random_02.txt :heavy_check_mark: AC 1452 ms 146 MB
g++-13 04_random_03.txt :heavy_check_mark: AC 1388 ms 146 MB
g++-13 04_random_04.txt :heavy_check_mark: AC 1367 ms 146 MB
g++-13 04_random_05.txt :heavy_check_mark: AC 1194 ms 146 MB
g++-13 04_random_06.txt :heavy_check_mark: AC 1256 ms 146 MB
g++-13 04_random_07.txt :heavy_check_mark: AC 1213 ms 146 MB
g++-13 04_random_08.txt :heavy_check_mark: AC 1213 ms 146 MB
g++-13 04_random_09.txt :heavy_check_mark: AC 1185 ms 146 MB
g++-13 04_random_10.txt :heavy_check_mark: AC 1257 ms 146 MB
g++-13 04_random_11.txt :heavy_check_mark: AC 1187 ms 146 MB
g++-13 04_random_12.txt :heavy_check_mark: AC 1200 ms 146 MB
g++-13 04_random_13.txt :heavy_check_mark: AC 1197 ms 146 MB
g++-13 04_random_14.txt :heavy_check_mark: AC 1201 ms 146 MB
g++-13 04_random_15.txt :heavy_check_mark: AC 1143 ms 146 MB
g++-13 04_random_16.txt :heavy_check_mark: AC 1198 ms 146 MB
g++-13 04_random_17.txt :heavy_check_mark: AC 1241 ms 146 MB
g++-13 04_random_18.txt :heavy_check_mark: AC 1212 ms 146 MB
g++-13 04_random_19.txt :heavy_check_mark: AC 1167 ms 146 MB
g++-13 04_random_20.txt :heavy_check_mark: AC 1238 ms 146 MB
g++-13 05_random_01.txt :heavy_check_mark: AC 152 ms 24 MB
g++-13 05_random_02.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 05_random_03.txt :heavy_check_mark: AC 4 ms 4 MB
clang++-18 00_sample_01.txt :heavy_check_mark: AC 5 ms 4 MB
clang++-18 00_sample_02.txt :heavy_check_mark: AC 4 ms 4 MB
clang++-18 01_random_01.txt :heavy_check_mark: AC 9 ms 5 MB
clang++-18 01_random_02.txt :heavy_check_mark: AC 9 ms 5 MB
clang++-18 01_random_03.txt :heavy_check_mark: AC 9 ms 5 MB
clang++-18 01_random_04.txt :heavy_check_mark: AC 9 ms 5 MB
clang++-18 01_random_05.txt :heavy_check_mark: AC 9 ms 5 MB
clang++-18 02_random_01.txt :heavy_check_mark: AC 1010 ms 146 MB
clang++-18 02_random_02.txt :heavy_check_mark: AC 1037 ms 145 MB
clang++-18 02_random_03.txt :heavy_check_mark: AC 975 ms 145 MB
clang++-18 02_random_04.txt :heavy_check_mark: AC 967 ms 145 MB
clang++-18 02_random_05.txt :heavy_check_mark: AC 1014 ms 146 MB
clang++-18 03_random_01.txt :heavy_check_mark: AC 971 ms 138 MB
clang++-18 03_random_02.txt :heavy_check_mark: AC 954 ms 138 MB
clang++-18 03_random_03.txt :heavy_check_mark: AC 994 ms 138 MB
clang++-18 03_random_04.txt :heavy_check_mark: AC 1012 ms 138 MB
clang++-18 03_random_05.txt :heavy_check_mark: AC 1012 ms 138 MB
clang++-18 03_random_06.txt :heavy_check_mark: AC 1081 ms 138 MB
clang++-18 03_random_07.txt :heavy_check_mark: AC 933 ms 123 MB
clang++-18 03_random_08.txt :heavy_check_mark: AC 961 ms 130 MB
clang++-18 03_random_09.txt :heavy_check_mark: AC 975 ms 138 MB
clang++-18 03_random_10.txt :heavy_check_mark: AC 965 ms 138 MB
clang++-18 04_random_01.txt :heavy_check_mark: AC 1037 ms 146 MB
clang++-18 04_random_02.txt :heavy_check_mark: AC 1002 ms 146 MB
clang++-18 04_random_03.txt :heavy_check_mark: AC 1006 ms 146 MB
clang++-18 04_random_04.txt :heavy_check_mark: AC 1045 ms 146 MB
clang++-18 04_random_05.txt :heavy_check_mark: AC 1015 ms 146 MB
clang++-18 04_random_06.txt :heavy_check_mark: AC 1011 ms 146 MB
clang++-18 04_random_07.txt :heavy_check_mark: AC 984 ms 146 MB
clang++-18 04_random_08.txt :heavy_check_mark: AC 1037 ms 146 MB
clang++-18 04_random_09.txt :heavy_check_mark: AC 1053 ms 146 MB
clang++-18 04_random_10.txt :heavy_check_mark: AC 1075 ms 146 MB
clang++-18 04_random_11.txt :heavy_check_mark: AC 1002 ms 146 MB
clang++-18 04_random_12.txt :heavy_check_mark: AC 1042 ms 146 MB
clang++-18 04_random_13.txt :heavy_check_mark: AC 993 ms 146 MB
clang++-18 04_random_14.txt :heavy_check_mark: AC 1009 ms 146 MB
clang++-18 04_random_15.txt :heavy_check_mark: AC 1013 ms 146 MB
clang++-18 04_random_16.txt :heavy_check_mark: AC 1043 ms 146 MB
clang++-18 04_random_17.txt :heavy_check_mark: AC 1048 ms 146 MB
clang++-18 04_random_18.txt :heavy_check_mark: AC 1141 ms 146 MB
clang++-18 04_random_19.txt :heavy_check_mark: AC 1006 ms 146 MB
clang++-18 04_random_20.txt :heavy_check_mark: AC 1137 ms 146 MB
clang++-18 05_random_01.txt :heavy_check_mark: AC 149 ms 24 MB
clang++-18 05_random_02.txt :heavy_check_mark: AC 5 ms 4 MB
clang++-18 05_random_03.txt :heavy_check_mark: AC 5 ms 4 MB
Back to top page