This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1502
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// affine合成 非可換群
#include <iostream>
#include "src/Math/ModInt.hpp"
#include "src/DataStructure/UnionFind_Potentialized_Undoable.hpp"
#include "src/Math/Algebra.hpp"
using namespace std;
struct M {
using T= pair<bool, long long>;
static constexpr T o= {false, 0};
static T add(const T &a, const T &b) {
if (b.first) return {!a.first, b.second - a.second};
else return {a.first, a.second + b.second};
}
static T neg(const T &a) { return {a.first, (a.first ? a.second : -a.second)}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
using Mint= ModInt<int(1e9 + 7)>;
using G= Algebra<M>;
int N, M, K;
cin >> N >> M >> K;
UnionFind_Potentialized_Undoable<G> uf(N);
vector<tuple<int, int, long long>> dat;
for (int i= 0; i < M; ++i) {
int X, Y;
long long Z;
cin >> X >> Y >> Z, --X, --Y;
dat.emplace_back(X, Y, Z);
if (uf.connected(X, Y)) continue;
uf.unite(X, Y, G(make_pair(true, Z)));
}
auto calc= [&](int k) -> Mint {
long long lb[N], ub[N];
fill_n(lb, N, -(1LL << 60));
fill_n(ub, N, 1LL << 60);
for (int i= N; i--;) {
int v= uf.leader(i);
auto [a, b]= uf.potential(i).x;
if (a) lb[v]= max(lb[v], b - k), ub[v]= min(ub[v], b - 1);
else lb[v]= max(lb[v], 1 - b), ub[v]= min(ub[v], k - b);
}
for (auto &&[X, Y, Z]: dat) {
auto [xa, xb]= uf.potential(X).x;
auto [ya, yb]= uf.potential(Y).x;
long long q= Z - xb - yb;
if (xa ^ ya) {
if (q) return 0;
continue;
}
if (q & 1) return 0;
if (xa) q= -q;
q/= 2;
if (q < 0 || k < q) return 0;
int v= uf.leader(X);
lb[v]= max(lb[v], q), ub[v]= min(ub[v], q);
}
Mint ret= 1;
for (int i= N; i--;) {
if (uf.leader(i) != i) continue;
ret*= max(0ll, ub[i] - lb[i] + 1);
}
return ret;
};
cout << calc(K) - calc(K - 1) << '\n';
return 0;
}
#line 1 "test/yukicoder/1502.UFPU.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1502
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// affine合成 非可換群
#include <iostream>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/DataStructure/UnionFind_Potentialized_Undoable.hpp"
#include <vector>
#include <algorithm>
#line 5 "src/DataStructure/UnionFind_Potentialized_Undoable.hpp"
template <class weight_t> class UnionFind_Potentialized_Undoable {
std::vector<int> par;
std::vector<weight_t> val;
std::vector<std::tuple<int, int, weight_t, int>> his;
int cur;
public:
UnionFind_Potentialized_Undoable(int n): par(n, -1), val(n), his{{-1, -1, weight_t(), 1}}, cur(0) { his.reserve(n + 1); }
int leader(int u) const { return par[u] < 0 ? u : leader(par[u]); }
// -p(v) + p(u) = w
bool unite(int u, int v, weight_t w) {
if constexpr (std::is_same_v<weight_t, bool>) w^= potential(v) ^ potential(u);
else w= potential(v) + w - potential(u);
if (++cur; (u= leader(u)) == (v= leader(v))) return ++std::get<3>(his.back()), w == weight_t();
if (par[v] > par[u]) std::swap(u, v), w= -w;
return his.emplace_back(u, par[u], val[u], 1), par[v]+= par[u], par[u]= v, val[u]= w, true;
}
bool connected(int u, int v) { return leader(u) == leader(v); }
int size(int u) { return -par[leader(u)]; }
weight_t potential(int u) {
if (par[u] < 0) return val[u];
if constexpr (std::is_same_v<weight_t, bool>) return potential(par[u]) ^ val[u];
else return potential(par[u]) + val[u];
}
// -p(v) + p(u)
weight_t diff(int u, int v) {
if constexpr (std::is_same_v<weight_t, bool>) return potential(u) ^ potential(v);
else return -potential(v) + potential(u);
}
int time() const { return cur; }
void undo() {
if (assert(cur > 0), --cur; --std::get<3>(his.back()) == 0) {
auto [u, p, v, _]= his.back();
par[par[u]]-= p, par[u]= p, val[u]= v, his.pop_back();
}
}
void rollback(int t) {
assert(0 <= t), assert(t <= cur);
if (t == cur) return;
for (;;) {
auto &[u, p, v, i]= his.back();
if (cur-= i; cur < t) {
i= t - cur, cur= t;
break;
}
par[par[u]]-= p, par[u]= p, val[u]= v, his.pop_back();
}
}
};
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
template <class, class= void> struct name: std::false_type {}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
template <class T, class= void> struct name { \
using type= type2; \
}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
using type= type1; \
}
#line 3 "src/Math/Algebra.hpp"
template <class M> struct Algebra {
using T= typename M::T;
_DETECT_BOOL(has_zero, decltype(T::o));
_DETECT_BOOL(has_one, decltype(T::i));
static inline T zero= has_zero_v<M> ? M::o : T();
static inline T one= has_one_v<M> ? M::i : T();
T x;
Algebra(): x(zero) {}
Algebra(bool y): x(y ? one : zero) {}
template <class U, typename= std::enable_if_t<std::is_convertible_v<U, T>>> Algebra(U y): x(y) {}
Algebra &operator+=(const Algebra &r) { return *this= *this + r; }
Algebra &operator-=(const Algebra &r) { return *this= *this - r; }
Algebra &operator*=(const Algebra &r) { return *this= *this * r; }
Algebra operator+(const Algebra &r) const { return Algebra(M::add(x, r.x)); }
Algebra operator-(const Algebra &r) const { return Algebra(M::add(x, M::neg(r.x))); }
Algebra operator*(const Algebra &r) const { return Algebra(M::mul(x, r.x)); }
Algebra operator-() const { return Algebra(M::neg(x)); }
bool operator==(const Algebra &r) const { return x == r.x; }
bool operator!=(const Algebra &r) const { return x != r.x; }
friend std::istream &operator>>(std::istream &is, Algebra &r) { return is >> r.x, is; }
friend std::ostream &operator<<(std::ostream &os, const Algebra &r) { return os << r.x; }
};
#line 9 "test/yukicoder/1502.UFPU.test.cpp"
using namespace std;
struct M {
using T= pair<bool, long long>;
static constexpr T o= {false, 0};
static T add(const T &a, const T &b) {
if (b.first) return {!a.first, b.second - a.second};
else return {a.first, a.second + b.second};
}
static T neg(const T &a) { return {a.first, (a.first ? a.second : -a.second)}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
using Mint= ModInt<int(1e9 + 7)>;
using G= Algebra<M>;
int N, M, K;
cin >> N >> M >> K;
UnionFind_Potentialized_Undoable<G> uf(N);
vector<tuple<int, int, long long>> dat;
for (int i= 0; i < M; ++i) {
int X, Y;
long long Z;
cin >> X >> Y >> Z, --X, --Y;
dat.emplace_back(X, Y, Z);
if (uf.connected(X, Y)) continue;
uf.unite(X, Y, G(make_pair(true, Z)));
}
auto calc= [&](int k) -> Mint {
long long lb[N], ub[N];
fill_n(lb, N, -(1LL << 60));
fill_n(ub, N, 1LL << 60);
for (int i= N; i--;) {
int v= uf.leader(i);
auto [a, b]= uf.potential(i).x;
if (a) lb[v]= max(lb[v], b - k), ub[v]= min(ub[v], b - 1);
else lb[v]= max(lb[v], 1 - b), ub[v]= min(ub[v], k - b);
}
for (auto &&[X, Y, Z]: dat) {
auto [xa, xb]= uf.potential(X).x;
auto [ya, yb]= uf.potential(Y).x;
long long q= Z - xb - yb;
if (xa ^ ya) {
if (q) return 0;
continue;
}
if (q & 1) return 0;
if (xa) q= -q;
q/= 2;
if (q < 0 || k < q) return 0;
int v= uf.leader(X);
lb[v]= max(lb[v], q), ub[v]= min(ub[v], q);
}
Mint ret= 1;
for (int i= N; i--;) {
if (uf.leader(i) != i) continue;
ret*= max(0ll, ub[i] - lb[i] + 1);
}
return ret;
};
cout << calc(K) - calc(K - 1) << '\n';
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 0_sample1.txt |
![]() |
7 ms | 4 MB |
g++-13 | 0_sample2.txt |
![]() |
6 ms | 4 MB |
g++-13 | 0_sample3.txt |
![]() |
6 ms | 4 MB |
g++-13 | 0_sample4.txt |
![]() |
6 ms | 4 MB |
g++-13 | 0_sample5.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop1.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop10.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop11.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop12.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop2.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop3.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop4.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop5.txt |
![]() |
7 ms | 4 MB |
g++-13 | 1_loop6.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop7.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop8.txt |
![]() |
6 ms | 4 MB |
g++-13 | 1_loop9.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal1.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal10.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal2.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal3.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal4.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal5.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal6.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal7.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal8.txt |
![]() |
6 ms | 4 MB |
g++-13 | 2_normal9.txt |
![]() |
6 ms | 4 MB |
g++-13 | 3_simple1.txt |
![]() |
29 ms | 12 MB |
g++-13 | 3_simple2.txt |
![]() |
31 ms | 12 MB |
g++-13 | 3_simple3.txt |
![]() |
11 ms | 7 MB |
g++-13 | 4_Nmax1.txt |
![]() |
51 ms | 12 MB |
g++-13 | 4_Nmax2.txt |
![]() |
53 ms | 11 MB |
g++-13 | 4_Nmax3.txt |
![]() |
50 ms | 12 MB |
g++-13 | 5_Mmax1.txt |
![]() |
39 ms | 7 MB |
g++-13 | 5_Mmax2.txt |
![]() |
40 ms | 7 MB |
g++-13 | 5_Mmax3.txt |
![]() |
39 ms | 7 MB |
g++-13 | 5_Mmax4.txt |
![]() |
24 ms | 6 MB |
g++-13 | 5_Mmax5.txt |
![]() |
23 ms | 7 MB |
g++-13 | 6_random1.txt |
![]() |
26 ms | 6 MB |
g++-13 | 6_random2.txt |
![]() |
20 ms | 6 MB |
g++-13 | 6_random3.txt |
![]() |
15 ms | 6 MB |
g++-13 | 6_random4.txt |
![]() |
9 ms | 5 MB |
g++-13 | 6_random5.txt |
![]() |
38 ms | 10 MB |
g++-13 | 98_challenge01.txt |
![]() |
7 ms | 4 MB |
clang++-18 | 0_sample1.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 0_sample2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 0_sample3.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 0_sample4.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 0_sample5.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop1.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop10.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop11.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop12.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop2.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop3.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop4.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop5.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop6.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop7.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop8.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 1_loop9.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 2_normal1.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal10.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal2.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal3.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal4.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal5.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 2_normal6.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 2_normal7.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal8.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 2_normal9.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 3_simple1.txt |
![]() |
30 ms | 12 MB |
clang++-18 | 3_simple2.txt |
![]() |
31 ms | 12 MB |
clang++-18 | 3_simple3.txt |
![]() |
10 ms | 7 MB |
clang++-18 | 4_Nmax1.txt |
![]() |
50 ms | 12 MB |
clang++-18 | 4_Nmax2.txt |
![]() |
53 ms | 12 MB |
clang++-18 | 4_Nmax3.txt |
![]() |
49 ms | 11 MB |
clang++-18 | 5_Mmax1.txt |
![]() |
38 ms | 7 MB |
clang++-18 | 5_Mmax2.txt |
![]() |
39 ms | 7 MB |
clang++-18 | 5_Mmax3.txt |
![]() |
38 ms | 7 MB |
clang++-18 | 5_Mmax4.txt |
![]() |
25 ms | 6 MB |
clang++-18 | 5_Mmax5.txt |
![]() |
24 ms | 6 MB |
clang++-18 | 6_random1.txt |
![]() |
26 ms | 6 MB |
clang++-18 | 6_random2.txt |
![]() |
20 ms | 6 MB |
clang++-18 | 6_random3.txt |
![]() |
14 ms | 6 MB |
clang++-18 | 6_random4.txt |
![]() |
8 ms | 4 MB |
clang++-18 | 6_random5.txt |
![]() |
37 ms | 11 MB |
clang++-18 | 98_challenge01.txt |
![]() |
7 ms | 4 MB |