Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/yukicoder/1270.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1270
// competitive-verifier: TLE 1.5
// competitive-verifier: MLE 64
#include <iostream>
#include "src/DataStructure/SegmentTree.hpp"
#include "src/DataStructure/BinaryIndexedTree.hpp"
#include "src/Misc/Mo.hpp"
using namespace std;
struct RmQRaQ {
 using T= int;
 using E= int;
 static T ti() { return 1 << 30; }
 static T op(T l, T r) { return min(l, r); }
 static void mp(T &v, E x) {
  if (v < ti()) v+= x;
 }
 static void cp(E &p, E s) { p+= s; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 vector<int> a(N);
 for (int i= 0; i < N; ++i) cin >> a[i], --a[i];
 BinaryIndexedTree<int> bitl(N), bitr(N);
 SegmentTree<RmQRaQ> seg(N, 0);
 int sum= 0, sz= 0;
 for (auto x: a) {
  sum+= bitr.sum(x + 1, N);
  bitr.add(x, 1);
  seg.apply(x + 1, N, 1);
 }
 Mo mo;
 for (int q= 0; q < Q; ++q) {
  int l, r;
  cin >> l >> r;
  mo.query(--l, r);
 }
 auto addl= [&](int i) {
  int x= a[i];
  sum-= bitl.sum(x + 1, N) + bitr.sum(0, x);
  bitl.add(x, -1);
  seg.apply(0, x, -1);
  ++sz;
 };
 auto addr= [&](int i) {
  int x= a[i];
  sum-= bitr.sum(0, x) + bitl.sum(x + 1, N);
  bitr.add(x, -1);
  seg.apply(x + 1, N, -1);
  ++sz;
 };
 auto erasel= [&](int i) {
  int x= a[i];
  sum+= bitl.sum(x + 1, N) + bitr.sum(0, x);
  bitl.add(x, 1);
  seg.apply(0, x, 1);
  --sz;
 };
 auto eraser= [&](int i) {
  int x= a[i];
  sum+= bitr.sum(0, x) + bitl.sum(x + 1, N);
  bitr.add(x, 1);
  seg.apply(x + 1, N, 1);
  --sz;
 };
 vector<int> ans(Q);
 auto out= [&](int q) { ans[q]= sum + seg.prod(0, N) * sz; };
 mo.run(addl, addr, erasel, eraser, out);
 for (auto x: ans) cout << x << '\n';
 return 0;
}
#line 1 "test/yukicoder/1270.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1270
// competitive-verifier: TLE 1.5
// competitive-verifier: MLE 64
#include <iostream>
#line 2 "src/DataStructure/SegmentTree.hpp"
#include <memory>
#include <cassert>
#include <vector>
#include <algorithm>
#line 2 "src/Internal/detection_idiom.hpp"
#include <type_traits>
#define _DETECT_BOOL(name, ...) \
 template <class, class= void> struct name: std::false_type {}; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
 template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
 template <class T, class= void> struct name { \
  using type= type2; \
 }; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
  using type= type1; \
 }
#line 7 "src/DataStructure/SegmentTree.hpp"
template <class M> class SegmentTree {
 _DETECT_BOOL(monoid, typename T::T, decltype(&T::op), decltype(&T::ti));
 _DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
 _DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
 using T= typename M::T;
 using E= typename nullptr_or_E<M>::type;
 int n;
 std::unique_ptr<T[]> dat;
 std::unique_ptr<E[]> laz;
 std::unique_ptr<bool[]> flg;
 inline void update(int k) { dat[k]= M::op(dat[k << 1], dat[k << 1 | 1]); }
 inline bool map(int k, E x, int sz) {
  if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz);
  else if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E>) return M::mp(dat[k], x);
  else if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz), true;
  else return M::mp(dat[k], x), true;
 }
 inline void prop(int k, E x, int sz) {
  if (k < n) {
   if (flg[k]) M::cp(laz[k], x);
   else laz[k]= x;
   flg[k]= true;
   if constexpr (monoid_v<M>)
    if (!map(k, x, sz)) push(k, sz), update(k);
  } else {
   if constexpr (monoid_v<M>) map(k, x, 1);
   else map(k - n, x, 1);
  }
 }
 inline void push(int k, int sz) {
  if (flg[k]) prop(k << 1, laz[k], sz >> 1), prop(k << 1 | 1, laz[k], sz >> 1), flg[k]= false;
 }
 inline bool valid(int k) const {
  int d= __builtin_clz(k) - __builtin_clz(n);
  return (n >> d) != k || ((n >> d) << d) == n;
 }
public:
 SegmentTree() {}
 SegmentTree(int n): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
  if constexpr (monoid_v<M>) std::fill_n(dat.get(), n << 1, M::ti());
  if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
 }
 template <class F> SegmentTree(int n, const F &init): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
  auto a= dat.get() + (n & -monoid_v<M>);
  for (int i= 0; i < n; ++i) a[i]= init(i);
  if constexpr (monoid_v<M>) build();
  if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
 }
 SegmentTree(int n, T x): SegmentTree(n, [x](int) { return x; }) {}
 SegmentTree(const std::vector<T> &v): SegmentTree(v.size(), [&v](int i) { return v[i]; }) {}
 SegmentTree(const T *bg, const T *ed): SegmentTree(ed - bg, [bg](int i) { return bg[i]; }) {}
 void build() {
  static_assert(monoid_v<M>, "\"build\" is not available\n");
  for (int i= n; --i;) update(i);
 }
 inline void unsafe_set(int i, T x) {
  static_assert(monoid_v<M>, "\"unsafe_set\" is not available\n");
  dat[i + n]= x;
 }
 inline void set(int i, T x) {
  get(i);
  if constexpr (monoid_v<M>)
   for (dat[i+= n]= x; i>>= 1;) update(i);
  else dat[i]= x;
 }
 inline void mul(int i, T x) {
  static_assert(monoid_v<M>, "\"mul\" is not available\n");
  set(i, M::op(get(i), x));
 }
 inline T get(int i) {
  i+= n;
  if constexpr (dual_v<M>)
   for (int j= 31 - __builtin_clz(i); j; --j) push(i >> j, 1 << j);
  if constexpr (monoid_v<M>) return dat[i];
  else return dat[i - n];
 }
 inline T operator[](int i) { return get(i); }
 inline T prod(int l, int r) {
  static_assert(monoid_v<M>, "\"prod\" is not available\n");
  l+= n, r+= n;
  if constexpr (dual_v<M>) {
   for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; --j) push(l >> j, 1 << j);
   for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; --j) push(r >> j, 1 << j);
  }
  T s1= M::ti(), s2= M::ti();
  for (; l < r; l>>= 1, r>>= 1) {
   if (l & 1) s1= M::op(s1, dat[l++]);
   if (r & 1) s2= M::op(dat[--r], s2);
  }
  return M::op(s1, s2);
 }
 inline void apply(int l, int r, E x) {
  static_assert(dual_v<M>, "\"apply\" is not available\n");
  l+= n, r+= n;
  for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; j--) push(l >> j, 1 << j);
  for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; j--) push(r >> j, 1 << j);
  for (int a= l, b= r, sz= 1; a < b; a>>= 1, b>>= 1, sz<<= 1) {
   if (a & 1) prop(a++, x, sz);
   if (b & 1) prop(--b, x, sz);
  }
  if constexpr (monoid_v<M>) {
   for (int j= __builtin_ctz(l) + 1; l >> j; ++j) update(l >> j);
   for (int j= __builtin_ctz(r) + 1; r >> j; ++j) update(r >> j);
  }
 }
 template <class C> int max_right(int l, const C &check) {
  static_assert(monoid_v<M>, "\"max_right\" is not available\n");
  assert(check(M::ti()));
  if (check(prod(l, n))) return n;
  T s= M::ti(), t;
  int sz= 1;
  for (get(l), l+= n;; s= t, ++l) {
   while (!(l & 1) && valid(l >> 1)) l>>= 1, sz<<= 1;
   if (!check(t= M::op(s, dat[l]))) {
    while (l < n) {
     if constexpr (dual_v<M>) push(l, sz);
     l<<= 1, sz>>= 1;
     if (check(t= M::op(s, dat[l]))) s= t, ++l;
    }
    return l - n;
   }
  }
 }
 template <class C> int min_left(int r, const C &check) {
  static_assert(monoid_v<M>, "\"min_left\" is not available\n");
  assert(check(M::ti()));
  if (check(prod(0, r))) return 0;
  T s= M::ti(), t;
  int sz= 1;
  for (get(--r), r+= n;; s= t, --r) {
   while (!valid(r)) r= r << 1 | 1, sz>>= 1;
   while ((r & 1) && valid(r >> 1)) r>>= 1, sz<<= 1;
   if (!check(t= M::op(dat[r], s))) {
    while (r < n) {
     if constexpr (dual_v<M>) push(r, sz);
     r= r << 1 | 1, sz>>= 1;
     if (check(t= M::op(dat[r], s))) s= t, --r;
    }
    return r + 1 - n;
   }
  }
 }
};
#line 4 "src/DataStructure/BinaryIndexedTree.hpp"
template <typename T> class BinaryIndexedTree {
 std::vector<T> dat;
public:
 BinaryIndexedTree(int n): dat(n + 1, T()) {}
 BinaryIndexedTree(int n, T a): BinaryIndexedTree(std::vector<T>(n, a)) {}
 BinaryIndexedTree(const std::vector<T>& y): dat(y.size() + 1, 0) {
  for (int i= y.size(); i--;) dat[i + 1]= y[i];
  for (int i= 1, e= dat.size(), j; i < e; ++i)
   if ((j= i + (i & -i)) < e) dat[j]+= dat[i];
 }
 void add(int i, T a= 1) {
  for (++i; i < (int)dat.size(); i+= i & -i) dat[i]+= a;
 }
 T sum(int i) const {  // sum [0,i)
  T s= 0;
  for (; i; i&= i - 1) s+= dat[i];
  return s;
 }
 T sum(int l, int r) const { return sum(r) - sum(l); }  // sum [l,r)
 T operator[](int k) const { return sum(k + 1) - sum(k); }
 int find(T k) const {  // min { i : sum(i+1) > k } -> kth element(0-indexed)
  int i= 0;
  for (int p= 1 << (std::__lg(dat.size() - 1) + 1), e= dat.size(); p; p>>= 1)
   if (i + p < e && dat[i + p] <= k) k-= dat[i+= p];
  return i + 1 == (int)dat.size() ? -1 : i;  // -1 -> no solutions
 }
};
#line 4 "src/Misc/Mo.hpp"
#include <numeric>
#include <cmath>
struct Mo {
 std::vector<int> L, R;
 Mo() {}
 void query(int l, int r) { L.push_back(l), R.push_back(r); } /* [l, r) */
 template <typename AL, typename AR, typename EL, typename ER, typename O> void run(const AL &add_left, const AR &add_right, const EL &erase_left, const ER &erase_right, const O &out) {
  int q= L.size(), n= *std::max_element(R.begin(), R.end()), bs= n / std::min<int>(n, std::sqrt(q));
  std::vector<int> ord(q);
  std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int a, int b) {
   int ablk= L[a] / bs, bblk= L[b] / bs;
   return ablk != bblk ? ablk < bblk : (ablk & 1) ? R[a] > R[b] : R[a] < R[b];
  });
  int l= 0, r= 0;
  for (auto i: ord) {
   while (l > L[i]) add_left(--l);
   while (r < R[i]) add_right(r++);
   while (l < L[i]) erase_left(l++);
   while (r > R[i]) erase_right(--r);
   out(i);
  }
 }
 template <typename A, typename E, typename O> void run(const A &add, const E &erase, const O &out) { run(add, add, erase, erase, out); }
};
#line 8 "test/yukicoder/1270.test.cpp"
using namespace std;
struct RmQRaQ {
 using T= int;
 using E= int;
 static T ti() { return 1 << 30; }
 static T op(T l, T r) { return min(l, r); }
 static void mp(T &v, E x) {
  if (v < ti()) v+= x;
 }
 static void cp(E &p, E s) { p+= s; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 vector<int> a(N);
 for (int i= 0; i < N; ++i) cin >> a[i], --a[i];
 BinaryIndexedTree<int> bitl(N), bitr(N);
 SegmentTree<RmQRaQ> seg(N, 0);
 int sum= 0, sz= 0;
 for (auto x: a) {
  sum+= bitr.sum(x + 1, N);
  bitr.add(x, 1);
  seg.apply(x + 1, N, 1);
 }
 Mo mo;
 for (int q= 0; q < Q; ++q) {
  int l, r;
  cin >> l >> r;
  mo.query(--l, r);
 }
 auto addl= [&](int i) {
  int x= a[i];
  sum-= bitl.sum(x + 1, N) + bitr.sum(0, x);
  bitl.add(x, -1);
  seg.apply(0, x, -1);
  ++sz;
 };
 auto addr= [&](int i) {
  int x= a[i];
  sum-= bitr.sum(0, x) + bitl.sum(x + 1, N);
  bitr.add(x, -1);
  seg.apply(x + 1, N, -1);
  ++sz;
 };
 auto erasel= [&](int i) {
  int x= a[i];
  sum+= bitl.sum(x + 1, N) + bitr.sum(0, x);
  bitl.add(x, 1);
  seg.apply(0, x, 1);
  --sz;
 };
 auto eraser= [&](int i) {
  int x= a[i];
  sum+= bitr.sum(0, x) + bitl.sum(x + 1, N);
  bitr.add(x, 1);
  seg.apply(x + 1, N, 1);
  --sz;
 };
 vector<int> ans(Q);
 auto out= [&](int q) { ans[q]= sum + seg.prod(0, N) * sz; };
 mo.run(addl, addr, erasel, eraser, out);
 for (auto x: ans) cout << x << '\n';
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 00_sample01.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 00_sample02.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 00_sample03.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 01_small01.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 01_small02.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 01_small03.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 02_random01.txt :heavy_check_mark: AC 42 ms 4 MB
g++-13 02_random02.txt :heavy_check_mark: AC 343 ms 4 MB
g++-13 02_random03.txt :heavy_check_mark: AC 55 ms 4 MB
g++-13 02_random04.txt :heavy_check_mark: AC 235 ms 4 MB
g++-13 02_random05.txt :heavy_check_mark: AC 234 ms 4 MB
g++-13 03_large01.txt :heavy_check_mark: AC 564 ms 4 MB
g++-13 03_large02.txt :heavy_check_mark: AC 565 ms 4 MB
g++-13 03_large03.txt :heavy_check_mark: AC 565 ms 4 MB
g++-13 04_killer01.txt :heavy_check_mark: AC 17 ms 4 MB
g++-13 04_killer02.txt :heavy_check_mark: AC 26 ms 4 MB
g++-13 04_killer03.txt :heavy_check_mark: AC 27 ms 4 MB
g++-13 04_killer04.txt :heavy_check_mark: AC 32 ms 4 MB
clang++-18 00_sample01.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 00_sample02.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 00_sample03.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 01_small01.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 01_small02.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 01_small03.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 02_random01.txt :heavy_check_mark: AC 42 ms 4 MB
clang++-18 02_random02.txt :heavy_check_mark: AC 333 ms 4 MB
clang++-18 02_random03.txt :heavy_check_mark: AC 55 ms 4 MB
clang++-18 02_random04.txt :heavy_check_mark: AC 229 ms 4 MB
clang++-18 02_random05.txt :heavy_check_mark: AC 229 ms 4 MB
clang++-18 03_large01.txt :heavy_check_mark: AC 551 ms 4 MB
clang++-18 03_large02.txt :heavy_check_mark: AC 553 ms 4 MB
clang++-18 03_large03.txt :heavy_check_mark: AC 552 ms 4 MB
clang++-18 04_killer01.txt :heavy_check_mark: AC 17 ms 4 MB
clang++-18 04_killer02.txt :heavy_check_mark: AC 25 ms 4 MB
clang++-18 04_killer03.txt :heavy_check_mark: AC 28 ms 4 MB
clang++-18 04_killer04.txt :heavy_check_mark: AC 33 ms 4 MB
Back to top page