Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/yukicoder/1216.Seg2D.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1216
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <array>
#include <tuple>

// 重みつき木

#include "src/DataStructure/SegmentTree_2D.hpp"
#include "src/Graph/Graph.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
using namespace std;
struct RSQ {
 using T= int;
 static T ti() { return 0; }
 static T op(T l, T r) { return l + r; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 Graph g(N, N - 1);
 vector<long long> C(N - 1);
 for (int i= 0; i < N - 1; ++i) cin >> g[i] >> C[i], --g[i];
 HeavyLightDecomposition tree(g, 0);
 auto adj= g.adjacency_edge(0);
 vector<long long> dep(N);
 for (int i= 0, v; i < N; ++i)
  for (int e: adj[v= tree.to_vertex(i)])
   if (int u= g[e].to(v); u != tree.parent(v)) dep[u]= dep[v] + C[e];
 set<array<long long, 2>> st;
 vector<tuple<int, int, int, long long>> query;
 for (int i= 0; i < Q; ++i) {
  int tp, v;
  long long t, l;
  cin >> tp >> v >> t >> l, --v;
  if (tp == 0) {
   long long x= tree.to_seq(v), y= t + dep[v];
   query.emplace_back(1, 0, x, y);
   st.insert({x, y});
   auto path= tree.path(0, v);
   int u= -1;
   for (int i= path.size(); i--;) {
    auto [a, b]= path[i];
    if (dep[v] - dep[tree.to_vertex(a)] <= l) continue;
    for (++b; b - a > 1;) {
     int m= (a + b) / 2;
     (dep[v] - dep[tree.to_vertex(m)] > l ? a : b)= m;
    }
    u= tree.to_vertex(a);
    break;
   }
   if (u != -1) {
    x= tree.to_seq(u);
    query.emplace_back(-1, 0, x, y);
    st.insert({x, y});
   }
  } else {
   auto [l, r]= tree.subtree(v);
   query.emplace_back(0, l, r, t + dep[v]);
  }
 }
 SegmentTree_2D<long long, RSQ> seg(st);
 for (auto [t, a, b, y]: query) {
  if (t == 0) cout << seg.prod(a, b, 0, y + 1) << '\n';
  else seg.mul(b, y, t);
 }
 return 0;
}
#line 1 "test/yukicoder/1216.Seg2D.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1216
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <array>
#include <tuple>

// 重みつき木

#line 3 "src/DataStructure/SegmentTree_2D.hpp"
#include <algorithm>
#include <numeric>
#include <map>
#include <set>
#include <cassert>
#line 4 "src/Internal/tuple_traits.hpp"
#include <type_traits>
#include <cstddef>
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
 if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
 if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
 if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
#line 9 "src/DataStructure/SegmentTree_2D.hpp"
template <class pos_t, class M> class SegmentTree_2D {
 using T= typename M::T;
 using Pos= std::array<pos_t, 2>;
 std::vector<pos_t> xs;
 std::vector<Pos> yxs;
 std::vector<int> id, tol;
 std::vector<T> val;
 template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t>>;
 template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t, T>>;
 template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
 int sz;
 inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); }
 inline int y2i(pos_t y) const {
  return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin();
 }
 inline int xy2i(pos_t x, pos_t y) const {
  Pos p{y, x};
  auto it= std::lower_bound(yxs.begin(), yxs.end(), p);
  return assert(p == *it), it - yxs.begin();
 }
 template <bool z, size_t k, class P> inline auto get_(const P &p) {
  if constexpr (z) return std::get<k>(p);
  else return std::get<k>(p.first);
 }
 template <bool z, class XYW> inline void build(const XYW *xyw, int n, const T &v= M::ti()) {
  xs.resize(n);
  for (int i= n; i--;) xs[i]= get_<z, 0>(xyw[i]);
  std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) + xs.size() + 1);
  std::vector<int> ord(n);
  for (int j= n; j--;)
   for (int i= x2i(get_<z, 0>(xyw[j])) + sz; i; i>>= 1) ++id[i + 1];
  for (int i= 1, e= sz + xs.size(); i < e; ++i) id[i + 1]+= id[i];
  val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_<z, 1>(xyw[i]) == get_<z, 1>(xyw[j]) ? get_<z, 0>(xyw[i]) < get_<z, 0>(xyw[j]) : get_<z, 1>(xyw[i]) < get_<z, 1>(xyw[j]); });
  {
   std::vector<int> ptr= id;
   for (int r: ord)
    for (int i= x2i(get_<z, 0>(xyw[r])) + sz, j= -1; i; j= i, i>>= 1) {
     int p= ptr[i]++;
     if constexpr (z) {
      if constexpr (std::tuple_size_v<XYW> == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]);
      else val[id[i + 1] + p]= v;
     } else val[id[i + 1] + p]= xyw[r].second;
     if (j != -1) tol[p + 1]= !(j & 1);
    }
   for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i];
   for (int i= 0, e= sz + xs.size(); i < e; ++i) {
    auto dat= val.begin() + id[i] * 2;
    for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]);
   }
  }
  yxs.resize(n);
  for (int i= n; i--;) yxs[i]= {get_<z, 1>(xyw[ord[i]]), get_<z, 0>(xyw[ord[i]])};
 }
 inline T prdi(int i, int a, int b) const {
  int n= id[i + 1] - id[i];
  T ret= M::ti();
  auto dat= val.begin() + id[i] * 2;
  for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) {
   if (a & 1) ret= M::op(ret, dat[a++]);
   if (b & 1) ret= M::op(dat[--b], ret);
  }
  return ret;
 }
 template <bool z> inline void seti(int i, int j, T v) {
  auto dat= val.begin() + id[i] * 2;
  j+= id[i + 1] - id[i];
  if constexpr (z) dat[j]= v;
  else dat[j]= M::op(dat[j], v);
  for (; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]);
 }
 template <bool z> inline void set_(pos_t x, pos_t y, T v) {
  for (int i= 1, p= xy2i(x, y);;) {
   if (seti<z>(i, p - id[i], v); i >= sz) break;
   if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i;
   else p= id[2 * i + 1] + rc, i= 2 * i + 1;
  }
 }
public:
 template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const P *p, size_t n) { build<1>(p, n); }
 template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const std::vector<P> &p): SegmentTree_2D(p.data(), p.size()) {}
 template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> SegmentTree_2D(const std::set<P> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const P *p, size_t n, const U &v) { build<1>(p, n, v); }
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<P> &p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::set<P> &p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::pair<P, U> *p, size_t n) { build<0>(p, n); }
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<std::pair<P, U>> &p): SegmentTree_2D(p.data(), p.size()) {}
 template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::map<P, U> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
 // [l,r) x [u,d)
 T prod(pos_t l, pos_t r, pos_t u, pos_t d) const {
  T ret= M::ti();
  int L= x2i(l), R= x2i(r);
  auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void {
   if (c == d || R <= a || b <= L) return;
   if (L <= a && b <= R) return ret= M::op(ret, prdi(i, c, d)), void();
   int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad;
   dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd);
  };
  return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret;
 }
 void set(pos_t x, pos_t y, T v) { set_<1>(x, y, v); }
 void mul(pos_t x, pos_t y, T v) { set_<0>(x, y, v); }
 T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; }
};
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#line 6 "src/Internal/ListRange.hpp"
#define _LR(name, IT, CT) \
 template <class T> struct name { \
  using Iterator= typename std::vector<T>::IT; \
  Iterator bg, ed; \
  Iterator begin() const { return bg; } \
  Iterator end() const { return ed; } \
  size_t size() const { return std::distance(bg, ed); } \
  CT &operator[](int i) const { return bg[i]; } \
 }
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
 std::vector<T> dat;
 std::vector<int> p;
 size_t size() const { return p.size() - 1; }
 ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
 ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
 os << '[';
 for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
 return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
 using std::pair<int, int>::pair;
 Edge &operator--() { return --first, --second, *this; }
 int to(int v) const { return first ^ second ^ v; }
 friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
 size_t n;
 Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
 size_t vertex_size() const { return n; }
 size_t edge_size() const { return size(); }
 size_t add_vertex() { return n++; }
 size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
 size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
 for (auto [u, v]: *this) a; \
 for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
 for (int i= size(); i--;) { \
  auto [u, v]= (*this)[i]; \
  b; \
 }
#define _ADJ(a, b) \
 vector<int> p(n + 1), c(size() << !dir); \
 if (!dir) { \
  _ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
 } else if (dir > 0) { \
  _ADJ_FOR(++p[u], c[--p[u]]= a) \
 } else { \
  _ADJ_FOR(++p[v], c[--p[v]]= b) \
 } \
 return {c, p}
 CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
 CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
 std::vector<int> P, PP, D, I, L, R;
public:
 HeavyLightDecomposition()= default;
 HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
 HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
  const int n= adj.size();
  P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
  auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
   for (P[r]= -1, I[t++]= r; i < t; ++i)
    for (int u: adj[v= I[i]])
     if (P[v] != u) P[I[t++]= u]= v;
  };
  f(root);
  for (int r= 0; r < n; ++r)
   if (P[r] == -2) f(r);
  std::vector<int> Z(n, 1), nx(n, -1);
  for (int i= n, v; i--;) {
   if (P[v= I[i]] == -1) continue;
   if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
   if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
  }
  for (int v= n; v--;) PP[v]= v;
  for (int v: I)
   if (nx[v] != -1) PP[nx[v]]= v;
  for (int v: I)
   if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
  for (int i= n; i--;) L[I[i]]= i;
  for (int v: I) {
   int ir= R[v]= L[v] + Z[v];
   for (int u: adj[v])
    if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
   if (nx[v] != -1) L[nx[v]]= L[v] + 1;
  }
  for (int i= n; i--;) I[L[i]]= i;
 }
 int to_seq(int v) const { return L[v]; }
 int to_vertex(int i) const { return I[i]; }
 size_t size() const { return P.size(); }
 int parent(int v) const { return P[v]; }
 int head(int v) const { return PP[v]; }
 int root(int v) const {
  for (v= PP[v];; v= PP[P[v]])
   if (P[v] == -1) return v;
 }
 bool connected(int u, int v) const { return root(u) == root(v); }
 // u is in v
 bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
 int subtree_size(int v) const { return R[v] - L[v]; }
 int lca(int u, int v) const {
  for (;; v= P[PP[v]]) {
   if (L[u] > L[v]) std::swap(u, v);
   if (PP[u] == PP[v]) return u;
  }
 }
 int la(int v, int k) const {
  assert(k <= D[v]);
  for (int u;; k-= L[v] - L[u] + 1, v= P[u])
   if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
 }
 int jump(int u, int v, int k) const {
  if (!k) return u;
  if (u == v) return -1;
  if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
  int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
  return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
 }
 int depth(int v) const { return D[v]; }
 int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
 // half-open interval [l,r)
 std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
 // sequence of closed intervals [l,r]
 std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
  std::vector<std::pair<int, int>> up, down;
  while (PP[u] != PP[v]) {
   if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
   else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
  }
  if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
  else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
  return up.insert(up.end(), down.rbegin(), down.rend()), up;
 }
};
#line 14 "test/yukicoder/1216.Seg2D.test.cpp"
using namespace std;
struct RSQ {
 using T= int;
 static T ti() { return 0; }
 static T op(T l, T r) { return l + r; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 Graph g(N, N - 1);
 vector<long long> C(N - 1);
 for (int i= 0; i < N - 1; ++i) cin >> g[i] >> C[i], --g[i];
 HeavyLightDecomposition tree(g, 0);
 auto adj= g.adjacency_edge(0);
 vector<long long> dep(N);
 for (int i= 0, v; i < N; ++i)
  for (int e: adj[v= tree.to_vertex(i)])
   if (int u= g[e].to(v); u != tree.parent(v)) dep[u]= dep[v] + C[e];
 set<array<long long, 2>> st;
 vector<tuple<int, int, int, long long>> query;
 for (int i= 0; i < Q; ++i) {
  int tp, v;
  long long t, l;
  cin >> tp >> v >> t >> l, --v;
  if (tp == 0) {
   long long x= tree.to_seq(v), y= t + dep[v];
   query.emplace_back(1, 0, x, y);
   st.insert({x, y});
   auto path= tree.path(0, v);
   int u= -1;
   for (int i= path.size(); i--;) {
    auto [a, b]= path[i];
    if (dep[v] - dep[tree.to_vertex(a)] <= l) continue;
    for (++b; b - a > 1;) {
     int m= (a + b) / 2;
     (dep[v] - dep[tree.to_vertex(m)] > l ? a : b)= m;
    }
    u= tree.to_vertex(a);
    break;
   }
   if (u != -1) {
    x= tree.to_seq(u);
    query.emplace_back(-1, 0, x, y);
    st.insert({x, y});
   }
  } else {
   auto [l, r]= tree.subtree(v);
   query.emplace_back(0, l, r, t + dep[v]);
  }
 }
 SegmentTree_2D<long long, RSQ> seg(st);
 for (auto [t, a, b, y]: query) {
  if (t == 0) cout << seg.prod(a, b, 0, y + 1) << '\n';
  else seg.mul(b, y, t);
 }
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 01_sample01.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 01_sample02.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 02_handmade01.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 02_handmade02.txt :heavy_check_mark: AC 6 ms 4 MB
g++-13 03_random01.txt :heavy_check_mark: AC 18 ms 6 MB
g++-13 03_random02.txt :heavy_check_mark: AC 173 ms 23 MB
g++-13 03_random03.txt :heavy_check_mark: AC 21 ms 5 MB
g++-13 03_random04.txt :heavy_check_mark: AC 163 ms 22 MB
g++-13 03_random05.txt :heavy_check_mark: AC 139 ms 19 MB
g++-13 03_random06.txt :heavy_check_mark: AC 73 ms 12 MB
g++-13 03_random07.txt :heavy_check_mark: AC 76 ms 12 MB
g++-13 03_random08.txt :heavy_check_mark: AC 40 ms 9 MB
g++-13 03_random09.txt :heavy_check_mark: AC 17 ms 6 MB
g++-13 03_random10.txt :heavy_check_mark: AC 47 ms 10 MB
g++-13 03_random11.txt :heavy_check_mark: AC 28 ms 8 MB
g++-13 03_random12.txt :heavy_check_mark: AC 43 ms 10 MB
g++-13 03_random13.txt :heavy_check_mark: AC 39 ms 10 MB
g++-13 03_random14.txt :heavy_check_mark: AC 166 ms 28 MB
g++-13 03_random15.txt :heavy_check_mark: AC 48 ms 11 MB
g++-13 03_random16.txt :heavy_check_mark: AC 257 ms 40 MB
g++-13 03_random17.txt :heavy_check_mark: AC 102 ms 20 MB
g++-13 03_random18.txt :heavy_check_mark: AC 57 ms 13 MB
g++-13 03_random19.txt :heavy_check_mark: AC 185 ms 31 MB
g++-13 03_random20.txt :heavy_check_mark: AC 22 ms 7 MB
g++-13 03_random21.txt :heavy_check_mark: AC 25 ms 7 MB
g++-13 03_random22.txt :heavy_check_mark: AC 16 ms 5 MB
g++-13 03_random23.txt :heavy_check_mark: AC 120 ms 21 MB
g++-13 03_random24.txt :heavy_check_mark: AC 42 ms 10 MB
g++-13 03_random25.txt :heavy_check_mark: AC 29 ms 8 MB
g++-13 03_random26.txt :heavy_check_mark: AC 60 ms 13 MB
g++-13 03_random27.txt :heavy_check_mark: AC 90 ms 17 MB
g++-13 03_random28.txt :heavy_check_mark: AC 186 ms 27 MB
g++-13 03_random29.txt :heavy_check_mark: AC 82 ms 16 MB
g++-13 03_random30.txt :heavy_check_mark: AC 27 ms 7 MB
g++-13 04_max01.txt :heavy_check_mark: AC 179 ms 24 MB
g++-13 04_max02.txt :heavy_check_mark: AC 210 ms 23 MB
g++-13 04_max03.txt :heavy_check_mark: AC 90 ms 15 MB
g++-13 04_max04.txt :heavy_check_mark: AC 195 ms 24 MB
g++-13 04_max05.txt :heavy_check_mark: AC 298 ms 42 MB
g++-13 04_max06.txt :heavy_check_mark: AC 188 ms 24 MB
g++-13 05_killer01.txt :heavy_check_mark: AC 173 ms 24 MB
g++-13 05_killer02.txt :heavy_check_mark: AC 178 ms 24 MB
g++-13 05_killer03.txt :heavy_check_mark: AC 172 ms 23 MB
g++-13 05_killer04.txt :heavy_check_mark: AC 166 ms 23 MB
g++-13 05_killer05.txt :heavy_check_mark: AC 171 ms 24 MB
g++-13 05_killer06.txt :heavy_check_mark: AC 337 ms 41 MB
g++-13 05_killer07.txt :heavy_check_mark: AC 358 ms 42 MB
g++-13 05_killer08.txt :heavy_check_mark: AC 348 ms 41 MB
g++-13 05_killer09.txt :heavy_check_mark: AC 333 ms 41 MB
g++-13 05_killer10.txt :heavy_check_mark: AC 340 ms 41 MB
clang++-18 01_sample01.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 01_sample02.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 02_handmade01.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 02_handmade02.txt :heavy_check_mark: AC 6 ms 4 MB
clang++-18 03_random01.txt :heavy_check_mark: AC 19 ms 6 MB
clang++-18 03_random02.txt :heavy_check_mark: AC 165 ms 23 MB
clang++-18 03_random03.txt :heavy_check_mark: AC 20 ms 6 MB
clang++-18 03_random04.txt :heavy_check_mark: AC 169 ms 22 MB
clang++-18 03_random05.txt :heavy_check_mark: AC 142 ms 19 MB
clang++-18 03_random06.txt :heavy_check_mark: AC 72 ms 12 MB
clang++-18 03_random07.txt :heavy_check_mark: AC 76 ms 12 MB
clang++-18 03_random08.txt :heavy_check_mark: AC 40 ms 9 MB
clang++-18 03_random09.txt :heavy_check_mark: AC 17 ms 6 MB
clang++-18 03_random10.txt :heavy_check_mark: AC 46 ms 10 MB
clang++-18 03_random11.txt :heavy_check_mark: AC 27 ms 8 MB
clang++-18 03_random12.txt :heavy_check_mark: AC 41 ms 11 MB
clang++-18 03_random13.txt :heavy_check_mark: AC 37 ms 10 MB
clang++-18 03_random14.txt :heavy_check_mark: AC 164 ms 28 MB
clang++-18 03_random15.txt :heavy_check_mark: AC 47 ms 12 MB
clang++-18 03_random16.txt :heavy_check_mark: AC 236 ms 39 MB
clang++-18 03_random17.txt :heavy_check_mark: AC 97 ms 21 MB
clang++-18 03_random18.txt :heavy_check_mark: AC 55 ms 13 MB
clang++-18 03_random19.txt :heavy_check_mark: AC 185 ms 31 MB
clang++-18 03_random20.txt :heavy_check_mark: AC 22 ms 7 MB
clang++-18 03_random21.txt :heavy_check_mark: AC 25 ms 7 MB
clang++-18 03_random22.txt :heavy_check_mark: AC 15 ms 5 MB
clang++-18 03_random23.txt :heavy_check_mark: AC 115 ms 21 MB
clang++-18 03_random24.txt :heavy_check_mark: AC 42 ms 10 MB
clang++-18 03_random25.txt :heavy_check_mark: AC 30 ms 8 MB
clang++-18 03_random26.txt :heavy_check_mark: AC 57 ms 13 MB
clang++-18 03_random27.txt :heavy_check_mark: AC 90 ms 17 MB
clang++-18 03_random28.txt :heavy_check_mark: AC 183 ms 27 MB
clang++-18 03_random29.txt :heavy_check_mark: AC 82 ms 16 MB
clang++-18 03_random30.txt :heavy_check_mark: AC 26 ms 7 MB
clang++-18 04_max01.txt :heavy_check_mark: AC 175 ms 24 MB
clang++-18 04_max02.txt :heavy_check_mark: AC 201 ms 24 MB
clang++-18 04_max03.txt :heavy_check_mark: AC 88 ms 15 MB
clang++-18 04_max04.txt :heavy_check_mark: AC 205 ms 25 MB
clang++-18 04_max05.txt :heavy_check_mark: AC 290 ms 41 MB
clang++-18 04_max06.txt :heavy_check_mark: AC 174 ms 24 MB
clang++-18 05_killer01.txt :heavy_check_mark: AC 169 ms 23 MB
clang++-18 05_killer02.txt :heavy_check_mark: AC 168 ms 24 MB
clang++-18 05_killer03.txt :heavy_check_mark: AC 167 ms 23 MB
clang++-18 05_killer04.txt :heavy_check_mark: AC 176 ms 24 MB
clang++-18 05_killer05.txt :heavy_check_mark: AC 172 ms 24 MB
clang++-18 05_killer06.txt :heavy_check_mark: AC 336 ms 42 MB
clang++-18 05_killer07.txt :heavy_check_mark: AC 333 ms 41 MB
clang++-18 05_killer08.txt :heavy_check_mark: AC 327 ms 41 MB
clang++-18 05_killer09.txt :heavy_check_mark: AC 328 ms 41 MB
clang++-18 05_killer10.txt :heavy_check_mark: AC 346 ms 42 MB
Back to top page