This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1216
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <array>
#include <tuple>
// 重みつき木
#include "src/DataStructure/KDTree.hpp"
#include "src/Graph/Graph.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
using namespace std;
struct RSQ {
using T= int;
static T ti() { return 0; }
static T op(T l, T r) { return l + r; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Graph g(N, N - 1);
vector<long long> C(N - 1);
for (int i= 0; i < N - 1; ++i) cin >> g[i] >> C[i], --g[i];
HeavyLightDecomposition tree(g, 0);
auto adj= g.adjacency_edge(0);
vector<long long> dep(N);
for (int i= 0, v; i < N; ++i)
for (int e: adj[v= tree.to_vertex(i)])
if (int u= g[e].to(v); u != tree.parent(v)) dep[u]= dep[v] + C[e];
set<array<long long, 2>> st;
vector<tuple<int, int, int, long long>> query;
for (int i= 0; i < Q; ++i) {
int tp, v;
long long t, l;
cin >> tp >> v >> t >> l, --v;
if (tp == 0) {
long long x= tree.to_seq(v), y= t + dep[v];
query.emplace_back(1, 0, x, y);
st.insert({x, y});
auto path= tree.path(0, v);
int u= -1;
for (int i= path.size(); i--;) {
auto [a, b]= path[i];
if (dep[v] - dep[tree.to_vertex(a)] <= l) continue;
for (++b; b - a > 1;) {
int m= (a + b) / 2;
(dep[v] - dep[tree.to_vertex(m)] > l ? a : b)= m;
}
u= tree.to_vertex(a);
break;
}
if (u != -1) {
x= tree.to_seq(u);
query.emplace_back(-1, 0, x, y);
st.insert({x, y});
}
} else {
auto [l, r]= tree.subtree(v);
query.emplace_back(0, l, r, t + dep[v]);
}
}
KDTree<long long, 2, RSQ> kdt(st);
for (auto [t, a, b, y]: query) {
if (t == 0) cout << kdt.prod_cuboid(a, b - 1, 0, y) << '\n';
else kdt.mul(b, y, t);
}
return 0;
}
#line 1 "test/yukicoder/1216.KDT.test.cpp"
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/1216
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <array>
#include <tuple>
// 重みつき木
#line 3 "src/DataStructure/KDTree.hpp"
#include <algorithm>
#include <numeric>
#include <map>
#include <set>
#include <cassert>
#include <cstdint>
#line 2 "src/Internal/HAS_CHECK.hpp"
#include <type_traits>
#define MEMBER_MACRO(member, Dummy, name, type1, type2, last) \
template <class tClass> struct name##member { \
template <class U, Dummy> static type1 check(U *); \
static type2 check(...); \
static tClass *mClass; \
last; \
}
#define HAS_CHECK(member, Dummy) MEMBER_MACRO(member, Dummy, has_, std::true_type, std::false_type, static const bool value= decltype(check(mClass))::value)
#define HAS_MEMBER(member) HAS_CHECK(member, int dummy= (&U::member, 0))
#define HAS_TYPE(member) HAS_CHECK(member, class dummy= typename U::member)
#define HOGE_OR(member, name, type2) \
MEMBER_MACRO(member, class dummy= typename U::member, name, typename U::member, type2, using type= decltype(check(mClass))); \
template <class tClass> using name##member##_t= typename name##member<tClass>::type
#define NULLPTR_OR(member) HOGE_OR(member, nullptr_or_, std::nullptr_t)
#define MYSELF_OR(member) HOGE_OR(member, myself_or_, tClass)
#line 5 "src/Internal/tuple_traits.hpp"
#include <cstddef>
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
#line 2 "src/Internal/long_traits.hpp"
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<char>{using type= short;};
template<>struct make_long<unsigned char>{using type= unsigned short;};
template<>struct make_long<short>{using type= int;};
template<>struct make_long<unsigned short>{using type= unsigned;};
template<>struct make_long<int>{using type= long long;};
template<>struct make_long<unsigned>{using type= unsigned long long;};
template<>struct make_long<long long>{using type= __int128_t;};
template<>struct make_long<unsigned long long>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
#line 12 "src/DataStructure/KDTree.hpp"
namespace kdtree_internal {
template <class pos_t, size_t K, class M, class A, class B> class KDTreeImpl {};
template <class pos_t, size_t K, class M, class... PK, class... PK2> class KDTreeImpl<pos_t, K, M, std::tuple<PK...>, std::tuple<PK2...>> {
HAS_MEMBER(op);
HAS_MEMBER(ti);
HAS_MEMBER(mp);
HAS_MEMBER(cp);
HAS_TYPE(T);
HAS_TYPE(E);
MYSELF_OR(T);
NULLPTR_OR(E);
using Sec= std::array<pos_t, 2>;
using Pos= std::array<pos_t, K>;
using Range= std::array<Sec, K>;
using long_pos_t= make_long_t<pos_t>;
template <class L> static constexpr bool monoid_v= std::conjunction_v<has_T<L>, has_op<L>, has_ti<L>>;
template <class L> static constexpr bool dual_v= std::conjunction_v<has_T<L>, has_E<L>, has_mp<L>, has_cp<L>>;
struct Node_BB {
int ch[2]= {-1, -1};
Pos pos;
pos_t range[K][2];
};
template <class U> struct Node_B: Node_BB {
U val;
};
template <class D, bool sg, bool du> struct Node_D: Node_B<M> {};
template <bool sg, bool du> struct Node_D<void, sg, du>: Node_BB {};
template <class D> struct Node_D<D, 1, 0>: Node_B<typename M::T> {
typename M::T sum;
};
template <class D> struct Node_D<D, 0, 1>: Node_B<typename M::T> {
typename M::E laz;
bool flg= false;
};
template <class D> struct Node_D<D, 1, 1>: Node_B<typename M::T> {
typename M::T sum;
typename M::E laz;
bool flg= false;
};
using Node= Node_D<M, monoid_v<M>, dual_v<M>>;
using Iter= typename std::vector<int>::iterator;
using T= std::conditional_t<std::is_void_v<M>, std::nullptr_t, myself_or_T_t<M>>;
using E= nullptr_or_E_t<M>;
template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<PK...>>;
template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<PK..., T>>;
template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
std::vector<Node> ns;
static inline T def_val() {
if constexpr (monoid_v<M>) return M::ti();
else return T();
}
template <bool z, size_t k, class P> static inline auto get_(const P &p) {
if constexpr (z) return std::get<k>(p);
else return std::get<k>(p.first);
}
template <class P, size_t... I> Range to_range(const P &p, std::index_sequence<I...>) { return {(assert(std::get<I + I>(p) <= std::get<I + I + 1>(p)), Sec{std::get<I + I>(p), std::get<I + I + 1>(p)})...}; }
inline void update(int t) {
ns[t].sum= ns[t].val;
if (ns[t].ch[0] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[0]].sum);
if (ns[t].ch[1] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[1]].sum);
}
inline void propagate(int t, const E &x) {
if (t == -1) return;
if (ns[t].flg) M::cp(ns[t].laz, x);
else ns[t].laz= x, ns[t].flg= true;
M::mp(ns[t].val, x);
if constexpr (monoid_v<M>) M::mp(ns[t].sum, x);
}
inline void push(int t) {
if (ns[t].flg) ns[t].flg= false, propagate(ns[t].ch[0], ns[t].laz), propagate(ns[t].ch[1], ns[t].laz);
}
template <bool z, class P, size_t k> inline void set_range(int t, int m, Iter bg, Iter ed, const P *p) {
auto [mn, mx]= std::minmax_element(bg, ed, [&](int a, int b) { return get_<z, k>(p[a]) < get_<z, k>(p[b]); });
ns[t].range[k][0]= get_<z, k>(p[*mn]), ns[t].range[k][1]= get_<z, k>(p[*mx]), ns[t].pos[k]= get_<z, k>(p[m]);
}
template <bool z, class P, size_t... I> inline void set_range_lp(int t, int m, Iter bg, Iter ed, const P *p, std::index_sequence<I...>) { (void)(int[]){(set_range<z, P, I>(t, m, bg, ed, p), 0)...}; }
template <bool z, uint8_t div, class P> inline int build(int &ts, Iter bg, Iter ed, const P *p, const T &v= def_val()) {
if (bg == ed) return -1;
auto md= bg + (ed - bg) / 2;
int t= ts++;
std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, *md, bg, ed, p, std::make_index_sequence<K>());
if constexpr (z) {
if constexpr (!std::is_void_v<M>) {
if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[*md]);
else ns[t].val= v;
}
} else ns[t].val= p[*md].second;
static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1;
ns[t].ch[0]= build<z, nx>(ts, bg, md, p, v), ns[t].ch[1]= build<z, nx>(ts, md + 1, ed, p, v);
if constexpr (monoid_v<M>) update(t);
return t;
}
template <bool z, uint8_t div, class P> inline int build(Iter bg, Iter ed, const P *p, int &ts) {
if (bg == ed) return -1;
auto md= bg + (ed - bg) / 2;
int t= ts++;
std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, bg, ed, p, std::make_index_sequence<K>());
if constexpr (z) {
if constexpr (!std::is_void_v<M>) {
if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[t]);
else ns[t].val= def_val();
}
} else ns[t].val= p[t].second;
static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1;
ns[t].ch[0]= build<z, nx>(bg, md, p, ts), ns[t].ch[1]= build<z, nx>(md + 1, ed, p, ts);
if constexpr (monoid_v<M>) update(t);
return t;
}
static inline auto in_cuboid(const Range &r) {
return [r](const Pos &pos) {
for (uint8_t k= K; k--;)
if (r[k][1] < pos[k] || pos[k] < r[k][0]) return false;
return true;
};
}
static inline auto out_cuboid(const Range &r) {
return [r](const pos_t rr[K][2]) {
for (uint8_t k= K; k--;)
if (rr[k][1] < r[k][0] || r[k][1] < rr[k][0]) return true;
return false;
};
}
static inline auto inall_cuboid(const Range &r) {
return [r](const pos_t rr[K][2]) {
for (uint8_t k= K; k--;)
if (rr[k][0] < r[k][0] || r[k][1] < rr[k][1]) return false;
return true;
};
}
static inline long_pos_t min_dist2(const pos_t r[K][2], const Pos &pos) {
long_pos_t d2= 0, dx;
for (uint8_t k= K; k--;) dx= std::clamp(pos[k], r[k][0], r[k][1]) - pos[k], d2+= dx * dx;
return d2;
}
static inline auto in_ball(const Pos &c, long_pos_t r2) {
return [c, r2](const Pos &pos) {
long_pos_t d2= 0, dx;
for (uint8_t k= K; k--;) dx= pos[k] - c[k], d2+= dx * dx;
return d2 <= r2;
};
}
static inline auto inall_ball(const Pos &c, long_pos_t r2) {
return [c, r2](const pos_t rr[K][2]) {
long_pos_t d2= 0, dx0, dx1;
for (uint8_t k= K; k--;) dx0= rr[k][0] - c[k], dx1= rr[k][1] - c[k], d2+= std::max(dx0 * dx0, dx1 * dx1);
return d2 <= r2;
};
}
static inline auto out_ball(const Pos &c, long_pos_t r2) {
return [c, r2](const pos_t r[K][2]) { return min_dist2(r, c) > r2; };
}
inline void nns(int t, const Pos &pos, std::pair<int, long_pos_t> &ret) const {
if (t == -1) return;
long_pos_t d2= min_dist2(ns[t].range, pos);
if (ret.first != -1 && d2 >= ret.second) return;
long_pos_t dx= d2= 0;
for (uint8_t k= K; k--;) dx= pos[k] - ns[t].pos[k], d2+= dx * dx;
if (ret.first == -1 || d2 < ret.second) ret= {t, d2};
bool f= 0;
if (auto [l, r]= ns[t].ch; l != -1 && r != -1) f= min_dist2(ns[l].range, pos) > min_dist2(ns[r].range, pos);
nns(ns[t].ch[f], pos, ret), nns(ns[t].ch[!f], pos, ret);
}
template <class In, class Out> inline void col(int t, const In &in, const Out &out, std::vector<T> &ret) const {
if (t == -1 || out(ns[t].range)) return;
if (in(ns[t].pos)) ret.push_back(ns[t].val);
col(ns[t].ch[0], in, out, ret), col(ns[t].ch[1], in, out, ret);
}
template <class In, class InAll, class Out> inline T fld(int t, const In &in, const InAll &inall, const Out &out) {
if (t == -1 || out(ns[t].range)) return def_val();
if (inall(ns[t].range)) return ns[t].sum;
if constexpr (dual_v<M>) push(t);
T ret= M::op(fld(ns[t].ch[0], in, inall, out), fld(ns[t].ch[1], in, inall, out));
return in(ns[t].pos) ? M::op(ret, ns[t].val) : ret;
}
template <class In, class InAll, class Out> inline void app(int t, const In &in, const InAll &inall, const Out &out, const E &x) {
if (t == -1 || out(ns[t].range)) return;
if (inall(ns[t].range)) return propagate(t, x);
if (push(t); in(ns[t].pos)) M::mp(ns[t].val, x);
app(ns[t].ch[0], in, inall, out, x), app(ns[t].ch[1], in, inall, out, x);
if constexpr (monoid_v<M>) update(t);
}
template <bool z> inline bool set(int t, const Pos &pos, const T &x) {
if (t == -1) return false;
bool isok= true;
for (uint8_t k= K; k--; isok&= pos[k] == ns[t].pos[k])
if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return false;
if constexpr (dual_v<M>) push(t);
if (isok) {
if constexpr (z) ns[t].val= x;
else ns[t].val= M::op(ns[t].val, x);
} else if (!(isok= set<z>(ns[t].ch[0], pos, x))) isok= set<z>(ns[t].ch[1], pos, x);
if constexpr (monoid_v<M>)
if (isok) update(t);
return isok;
}
inline std::pair<T, bool> get(int t, const Pos &pos) {
if (t == -1) return {T(), false};
bool myself= true;
for (uint8_t k= K; k--; myself&= pos[k] == ns[t].pos[k])
if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return {T(), false};
if (myself) return {ns[t].val, true};
if constexpr (dual_v<M>) push(t);
auto ret= get(ns[t].ch[0], pos);
return !ret.second ? get(ns[t].ch[1], pos) : ret;
}
public:
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const P *p, size_t n): ns(n) {
std::vector<int> ids(n);
int ts= 0;
std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p);
}
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const std::vector<P> &p): KDTreeImpl(p.data(), p.size()) {}
template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> KDTreeImpl(const std::set<P> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const P *p, size_t n, U v): ns(n) {
std::vector<int> ids(n);
int ts= 0;
std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p, v);
}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<P> &p, U v): KDTreeImpl(p.data(), p.size(), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::set<P> &p, U v): KDTreeImpl(std::vector(p.begin(), p.end()), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::pair<P, U> *p, size_t n): ns(n) {
std::vector<int> ids(n);
int ts= 0;
std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p);
}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<std::pair<P, U>> &p): KDTreeImpl(p.data(), p.size()) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::map<P, U> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {}
std::vector<T> enum_cuboid(PK2... xs) {
static_assert(!std::is_void_v<M>, "\"enum_cuboid\" is not available");
std::vector<T> ret;
auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>());
return col(-ns.empty(), in_cuboid(r), out_cuboid(r), ret), ret;
}
std::vector<T> enum_ball(PK... xs, pos_t r) const {
static_assert(!std::is_void_v<M>, "\"enum_ball\" is not available");
std::vector<T> ret;
long_pos_t r2= long_pos_t(r) * r;
return col(-ns.empty(), in_ball({xs...}, r2), out_ball({xs...}, r2), ret), ret;
}
T prod_cuboid(PK2... xs) {
static_assert(monoid_v<M>, "\"prod_cuboid\" is not available");
auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>());
return fld(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r));
}
T prod_ball(PK... xs, pos_t r) {
static_assert(monoid_v<M>, "\"prod_ball\" is not available");
long_pos_t r2= long_pos_t(r) * r;
return fld(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out_ball({xs...}, r2));
}
void apply_cuboid(PK2... xs, E a) {
static_assert(dual_v<M>, "\"apply_cuboid\" is not available");
auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>());
app(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r), a);
}
void apply_ball(PK... xs, pos_t r, E a) {
static_assert(dual_v<M>, "\"apply_ball\" is not available");
long_pos_t r2= long_pos_t(r) * r;
app(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out({xs...}, r2), a);
}
void set(PK... xs, T v) { assert(ns.size()), assert(set<1>(0, {xs...}, v)); }
void mul(PK... xs, T v) {
static_assert(monoid_v<M>, "\"mul\" is not available");
assert(ns.size()), assert(set<0>(0, {xs...}, v));
}
T get(PK... xs) {
assert(ns.size());
auto [ret, flg]= get(0, {xs...});
return assert(flg), ret;
}
Pos nearest_neighbor(PK... xs) const {
assert(ns.size());
std::pair<int, long_pos_t> ret= {-1, -1};
return nns(0, {xs...}, ret), ns[ret.first].pos;
}
};
template <class pos_t, size_t K, class M= void> using KDTree= KDTreeImpl<pos_t, K, M, to_tuple_t<std::array<pos_t, K>>, to_tuple_t<std::array<pos_t, K + K>>>;
}
using kdtree_internal::KDTree;
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#line 6 "src/Internal/ListRange.hpp"
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
using std::pair<int, int>::pair;
Edge &operator--() { return --first, --second, *this; }
int to(int v) const { return first ^ second ^ v; }
friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
size_t n;
Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
size_t vertex_size() const { return n; }
size_t edge_size() const { return size(); }
size_t add_vertex() { return n++; }
size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
for (auto [u, v]: *this) a; \
for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
for (int i= size(); i--;) { \
auto [u, v]= (*this)[i]; \
b; \
}
#define _ADJ(a, b) \
vector<int> p(n + 1), c(size() << !dir); \
if (!dir) { \
_ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
} else if (dir > 0) { \
_ADJ_FOR(++p[u], c[--p[u]]= a) \
} else { \
_ADJ_FOR(++p[v], c[--p[v]]= b) \
} \
return {c, p}
CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
std::vector<int> P, PP, D, I, L, R;
public:
HeavyLightDecomposition()= default;
HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
const int n= adj.size();
P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: adj[v= I[i]])
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (int r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v= n; v--;) PP[v]= v;
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: adj[v])
if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
for (int i= n; i--;) I[L[i]]= i;
}
int to_seq(int v) const { return L[v]; }
int to_vertex(int i) const { return I[i]; }
size_t size() const { return P.size(); }
int parent(int v) const { return P[v]; }
int head(int v) const { return PP[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int depth(int v) const { return D[v]; }
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
// half-open interval [l,r)
std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
// sequence of closed intervals [l,r]
std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
std::vector<std::pair<int, int>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
#line 14 "test/yukicoder/1216.KDT.test.cpp"
using namespace std;
struct RSQ {
using T= int;
static T ti() { return 0; }
static T op(T l, T r) { return l + r; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Graph g(N, N - 1);
vector<long long> C(N - 1);
for (int i= 0; i < N - 1; ++i) cin >> g[i] >> C[i], --g[i];
HeavyLightDecomposition tree(g, 0);
auto adj= g.adjacency_edge(0);
vector<long long> dep(N);
for (int i= 0, v; i < N; ++i)
for (int e: adj[v= tree.to_vertex(i)])
if (int u= g[e].to(v); u != tree.parent(v)) dep[u]= dep[v] + C[e];
set<array<long long, 2>> st;
vector<tuple<int, int, int, long long>> query;
for (int i= 0; i < Q; ++i) {
int tp, v;
long long t, l;
cin >> tp >> v >> t >> l, --v;
if (tp == 0) {
long long x= tree.to_seq(v), y= t + dep[v];
query.emplace_back(1, 0, x, y);
st.insert({x, y});
auto path= tree.path(0, v);
int u= -1;
for (int i= path.size(); i--;) {
auto [a, b]= path[i];
if (dep[v] - dep[tree.to_vertex(a)] <= l) continue;
for (++b; b - a > 1;) {
int m= (a + b) / 2;
(dep[v] - dep[tree.to_vertex(m)] > l ? a : b)= m;
}
u= tree.to_vertex(a);
break;
}
if (u != -1) {
x= tree.to_seq(u);
query.emplace_back(-1, 0, x, y);
st.insert({x, y});
}
} else {
auto [l, r]= tree.subtree(v);
query.emplace_back(0, l, r, t + dep[v]);
}
}
KDTree<long long, 2, RSQ> kdt(st);
for (auto [t, a, b, y]: query) {
if (t == 0) cout << kdt.prod_cuboid(a, b - 1, 0, y) << '\n';
else kdt.mul(b, y, t);
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 01_sample01.txt |
![]() |
6 ms | 4 MB |
g++-13 | 01_sample02.txt |
![]() |
6 ms | 3 MB |
g++-13 | 02_handmade01.txt |
![]() |
5 ms | 4 MB |
g++-13 | 02_handmade02.txt |
![]() |
5 ms | 4 MB |
g++-13 | 03_random01.txt |
![]() |
18 ms | 6 MB |
g++-13 | 03_random02.txt |
![]() |
228 ms | 16 MB |
g++-13 | 03_random03.txt |
![]() |
20 ms | 5 MB |
g++-13 | 03_random04.txt |
![]() |
230 ms | 15 MB |
g++-13 | 03_random05.txt |
![]() |
204 ms | 13 MB |
g++-13 | 03_random06.txt |
![]() |
86 ms | 9 MB |
g++-13 | 03_random07.txt |
![]() |
95 ms | 9 MB |
g++-13 | 03_random08.txt |
![]() |
41 ms | 7 MB |
g++-13 | 03_random09.txt |
![]() |
17 ms | 6 MB |
g++-13 | 03_random10.txt |
![]() |
46 ms | 8 MB |
g++-13 | 03_random11.txt |
![]() |
23 ms | 7 MB |
g++-13 | 03_random12.txt |
![]() |
34 ms | 8 MB |
g++-13 | 03_random13.txt |
![]() |
34 ms | 8 MB |
g++-13 | 03_random14.txt |
![]() |
123 ms | 19 MB |
g++-13 | 03_random15.txt |
![]() |
38 ms | 9 MB |
g++-13 | 03_random16.txt |
![]() |
155 ms | 25 MB |
g++-13 | 03_random17.txt |
![]() |
75 ms | 14 MB |
g++-13 | 03_random18.txt |
![]() |
43 ms | 9 MB |
g++-13 | 03_random19.txt |
![]() |
124 ms | 20 MB |
g++-13 | 03_random20.txt |
![]() |
21 ms | 6 MB |
g++-13 | 03_random21.txt |
![]() |
23 ms | 6 MB |
g++-13 | 03_random22.txt |
![]() |
14 ms | 5 MB |
g++-13 | 03_random23.txt |
![]() |
140 ms | 13 MB |
g++-13 | 03_random24.txt |
![]() |
39 ms | 8 MB |
g++-13 | 03_random25.txt |
![]() |
28 ms | 7 MB |
g++-13 | 03_random26.txt |
![]() |
57 ms | 10 MB |
g++-13 | 03_random27.txt |
![]() |
96 ms | 12 MB |
g++-13 | 03_random28.txt |
![]() |
210 ms | 17 MB |
g++-13 | 03_random29.txt |
![]() |
85 ms | 12 MB |
g++-13 | 03_random30.txt |
![]() |
25 ms | 6 MB |
g++-13 | 04_max01.txt |
![]() |
241 ms | 16 MB |
g++-13 | 04_max02.txt |
![]() |
402 ms | 16 MB |
g++-13 | 04_max03.txt |
![]() |
108 ms | 16 MB |
g++-13 | 04_max04.txt |
![]() |
222 ms | 17 MB |
g++-13 | 04_max05.txt |
![]() |
187 ms | 25 MB |
g++-13 | 04_max06.txt |
![]() |
453 ms | 16 MB |
g++-13 | 05_killer01.txt |
![]() |
450 ms | 16 MB |
g++-13 | 05_killer02.txt |
![]() |
445 ms | 16 MB |
g++-13 | 05_killer03.txt |
![]() |
450 ms | 16 MB |
g++-13 | 05_killer04.txt |
![]() |
449 ms | 16 MB |
g++-13 | 05_killer05.txt |
![]() |
443 ms | 16 MB |
g++-13 | 05_killer06.txt |
![]() |
198 ms | 26 MB |
g++-13 | 05_killer07.txt |
![]() |
193 ms | 26 MB |
g++-13 | 05_killer08.txt |
![]() |
194 ms | 25 MB |
g++-13 | 05_killer09.txt |
![]() |
188 ms | 25 MB |
g++-13 | 05_killer10.txt |
![]() |
194 ms | 25 MB |
clang++-18 | 01_sample01.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 01_sample02.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 02_handmade01.txt |
![]() |
6 ms | 4 MB |
clang++-18 | 02_handmade02.txt |
![]() |
5 ms | 4 MB |
clang++-18 | 03_random01.txt |
![]() |
18 ms | 6 MB |
clang++-18 | 03_random02.txt |
![]() |
220 ms | 16 MB |
clang++-18 | 03_random03.txt |
![]() |
20 ms | 5 MB |
clang++-18 | 03_random04.txt |
![]() |
218 ms | 15 MB |
clang++-18 | 03_random05.txt |
![]() |
197 ms | 13 MB |
clang++-18 | 03_random06.txt |
![]() |
84 ms | 9 MB |
clang++-18 | 03_random07.txt |
![]() |
94 ms | 9 MB |
clang++-18 | 03_random08.txt |
![]() |
40 ms | 7 MB |
clang++-18 | 03_random09.txt |
![]() |
17 ms | 6 MB |
clang++-18 | 03_random10.txt |
![]() |
46 ms | 8 MB |
clang++-18 | 03_random11.txt |
![]() |
22 ms | 7 MB |
clang++-18 | 03_random12.txt |
![]() |
31 ms | 8 MB |
clang++-18 | 03_random13.txt |
![]() |
31 ms | 8 MB |
clang++-18 | 03_random14.txt |
![]() |
117 ms | 19 MB |
clang++-18 | 03_random15.txt |
![]() |
35 ms | 9 MB |
clang++-18 | 03_random16.txt |
![]() |
138 ms | 25 MB |
clang++-18 | 03_random17.txt |
![]() |
67 ms | 13 MB |
clang++-18 | 03_random18.txt |
![]() |
40 ms | 9 MB |
clang++-18 | 03_random19.txt |
![]() |
116 ms | 20 MB |
clang++-18 | 03_random20.txt |
![]() |
21 ms | 7 MB |
clang++-18 | 03_random21.txt |
![]() |
23 ms | 6 MB |
clang++-18 | 03_random22.txt |
![]() |
14 ms | 5 MB |
clang++-18 | 03_random23.txt |
![]() |
135 ms | 13 MB |
clang++-18 | 03_random24.txt |
![]() |
39 ms | 8 MB |
clang++-18 | 03_random25.txt |
![]() |
28 ms | 7 MB |
clang++-18 | 03_random26.txt |
![]() |
57 ms | 10 MB |
clang++-18 | 03_random27.txt |
![]() |
94 ms | 12 MB |
clang++-18 | 03_random28.txt |
![]() |
197 ms | 17 MB |
clang++-18 | 03_random29.txt |
![]() |
84 ms | 12 MB |
clang++-18 | 03_random30.txt |
![]() |
25 ms | 6 MB |
clang++-18 | 04_max01.txt |
![]() |
227 ms | 16 MB |
clang++-18 | 04_max02.txt |
![]() |
374 ms | 16 MB |
clang++-18 | 04_max03.txt |
![]() |
110 ms | 16 MB |
clang++-18 | 04_max04.txt |
![]() |
225 ms | 17 MB |
clang++-18 | 04_max05.txt |
![]() |
191 ms | 25 MB |
clang++-18 | 04_max06.txt |
![]() |
424 ms | 16 MB |
clang++-18 | 05_killer01.txt |
![]() |
415 ms | 16 MB |
clang++-18 | 05_killer02.txt |
![]() |
418 ms | 16 MB |
clang++-18 | 05_killer03.txt |
![]() |
417 ms | 16 MB |
clang++-18 | 05_killer04.txt |
![]() |
420 ms | 16 MB |
clang++-18 | 05_killer05.txt |
![]() |
421 ms | 16 MB |
clang++-18 | 05_killer06.txt |
![]() |
177 ms | 25 MB |
clang++-18 | 05_killer07.txt |
![]() |
178 ms | 25 MB |
clang++-18 | 05_killer08.txt |
![]() |
175 ms | 26 MB |
clang++-18 | 05_killer09.txt |
![]() |
180 ms | 26 MB |
clang++-18 | 05_killer10.txt |
![]() |
176 ms | 25 MB |