This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_range_sum
// competitive-verifier: TLE 2
// competitive-verifier: MLE 64
// apply, prod の verify
#include <iostream>
#include "src/DataStructure/SplayTree.hpp"
#include "src/Math/ModInt.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RaffineQ_RsumQ {
using T= Mint;
using E= pair<Mint, Mint>;
static T op(const T &l, const T &r) { return l + r; }
static void mp(T &v, const E &f, std::size_t sz) { v= f.first * v + f.second * sz; }
static void cp(E &pre, const E &suf) { pre= {suf.first * pre.first, suf.first * pre.second + suf.second}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Mint v[N];
for (int i= 0; i < N; i++) cin >> v[i];
SplayTree<RaffineQ_RsumQ> st(v, v + N);
while (Q--) {
bool op;
int l, r;
cin >> op >> l >> r;
if (op) {
cout << st.prod(l, r) << '\n';
} else {
Mint b, c;
cin >> b >> c;
st.apply(l, r, {b, c});
}
}
return 0;
}
#line 1 "test/yosupo/range_affine_range_sum.Splay.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_range_sum
// competitive-verifier: TLE 2
// competitive-verifier: MLE 64
// apply, prod の verify
#include <iostream>
#line 2 "src/DataStructure/SplayTree.hpp"
#include <vector>
#include <string>
#include <array>
#include <tuple>
#include <utility>
#include <cstddef>
#include <cassert>
#line 2 "src/Internal/detection_idiom.hpp"
#include <type_traits>
#define _DETECT_BOOL(name, ...) \
template <class, class= void> struct name: std::false_type {}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
template <class T, class= void> struct name { \
using type= type2; \
}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
using type= type1; \
}
#line 10 "src/DataStructure/SplayTree.hpp"
template <class M, bool reversible= false> class SplayTree {
_DETECT_BOOL(semigroup, typename T::T, decltype(&T::op));
_DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
_DETECT_BOOL(commute, typename T::commute);
_DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
_DETECT_TYPE(myself_or_T, typename T::T, T, typename T::T);
using T= typename myself_or_T<M>::type;
using E= typename nullptr_or_E<M>::type;
template <class D> struct NodeB {
T val;
D *ch[2]= {nullptr, nullptr}, *par= nullptr;
size_t sz= 0;
};
template <class D, bool du> struct NodeD: NodeB<D> {};
template <class D> struct NodeD<D, 1>: NodeB<D> {
E laz;
};
template <class D, bool sg, bool rev, bool com> struct NodeS: NodeD<D, dual_v<M>> {};
template <class D, bool rev, bool com> struct NodeS<D, 1, rev, com>: NodeD<D, dual_v<M>> {
T sum;
};
template <class D> struct NodeS<D, 1, 1, 0>: NodeD<D, dual_v<M>> {
T sum, rsum;
};
struct Node: NodeS<Node, semigroup_v<M>, reversible, commute_v<M>> {
size_t size() const {
if constexpr (dual_v<M> || reversible) return this->sz & 0x3fffffff;
else return this->sz;
}
};
using np= Node *;
np rt;
template <class S> static inline np build(size_t bg, size_t ed, np par, const S &val) {
if (bg == ed) return nullptr;
size_t mid= bg + (ed - bg) / 2;
np t= new Node;
if constexpr (std::is_same_v<S, T>) t->val= val;
else t->val= val[mid];
return t->par= par, t->ch[0]= build(bg, mid, t, val), t->ch[1]= build(mid + 1, ed, t, val), update(t), t;
}
static inline void dump(typename std::vector<T>::iterator itr, np t) {
if (!t) return;
if constexpr (dual_v<M>) push_prop(t);
if constexpr (reversible) push_tog(t);
size_t sz= t->ch[0] ? t->ch[0]->size() : 0;
*(itr + sz)= t->val, dump(itr, t->ch[0]), dump(itr + sz + 1, t->ch[1]);
}
template <bool sz= true> static inline void update(np t) {
if constexpr (sz) t->sz= 1;
if constexpr (semigroup_v<M>) {
t->sum= t->val;
if constexpr (reversible && !commute_v<M>) t->rsum= t->sum;
}
if (t->ch[0]) {
if constexpr (sz) t->sz+= t->ch[0]->size();
if constexpr (semigroup_v<M>) {
t->sum= M::op(t->ch[0]->sum, t->sum);
if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->rsum, t->ch[0]->rsum);
}
}
if (t->ch[1]) {
if constexpr (sz) t->sz+= t->ch[1]->size();
if constexpr (semigroup_v<M>) {
t->sum= M::op(t->sum, t->ch[1]->sum);
if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->ch[1]->rsum, t->rsum);
}
}
}
static inline void map(T &v, E x, int sz) {
if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) M::mp(v, x, sz);
else M::mp(v, x);
}
static inline void propagate(np t, const E &x) {
if (!t) return;
if (t->sz >> 31) M::cp(t->laz, x);
else t->laz= x;
if constexpr (semigroup_v<M>) {
map(t->sum, x, t->size());
if constexpr (reversible && !commute_v<M>) map(t->rsum, x, t->size());
}
map(t->val, x, 1), t->sz|= 0x80000000;
}
static inline void toggle(np t) {
if (!t) return;
if constexpr (semigroup_v<M> && !commute_v<M>) std::swap(t->sum, t->rsum);
std::swap(t->ch[0], t->ch[1]), t->sz^= 0x40000000;
}
static inline void push_prop(np t) {
if (t->sz >> 31) propagate(t->ch[0], t->laz), propagate(t->ch[1], t->laz), t->sz^= 0x80000000;
}
static inline void push_tog(np t) {
if (t->sz & 0x40000000) toggle(t->ch[0]), toggle(t->ch[1]), t->sz^= 0x40000000;
}
static inline void rot(np t) {
np p= t->par;
if (bool d= p->ch[1] == t; (p->ch[d]= std::exchange(t->ch[!d], p))) p->ch[d]->par= p;
if ((t->par= std::exchange(p->par, t))) t->par->ch[t->par->ch[1] == p]= t;
update(p);
}
static inline void splay(np &t, size_t k) {
for (assert(t), assert(k < t->size());;) {
size_t sz= t->ch[0] ? t->ch[0]->size() : 0;
if constexpr (dual_v<M>) push_prop(t);
if constexpr (reversible) push_tog(t);
if (sz == k) break;
if (sz < k) k-= sz + 1, t= t->ch[1];
else t= t->ch[0];
}
for (np p; (p= t->par); rot(t))
if (p->par) rot(p->par->ch[p->ch[1] == t] == p ? p : t);
update(t);
}
inline np between(size_t a, size_t b) { return a ? b == rt->size() ? (splay(rt, a - 1), rt->ch[1]) : (splay(rt, b), rt->ch[0]->par= nullptr, splay(rt->ch[0], a - 1), rt->ch[0]->par= rt, rt->ch[0]->ch[1]) : b == rt->size() ? rt : (splay(rt, b), rt->ch[0]); }
static inline SplayTree np_to(np t) {
SplayTree ret;
return ret.rt= t, ret;
}
public:
SplayTree(): rt(nullptr) {}
SplayTree(size_t n, const T &val= T()): rt(n ? build(0, n, nullptr, val) : nullptr) {}
SplayTree(const T *bg, const T *ed): rt(bg == ed ? nullptr : build(0, ed - bg, nullptr, bg)) {}
SplayTree(const std::vector<T> &v): SplayTree(v.data(), v.data() + v.size()) {}
size_t size() const { return rt ? rt->size() : 0; }
void clear() { rt= nullptr; }
std::vector<T> dump() {
if (!rt) return std::vector<T>();
std::vector<T> ret(size());
return dump(ret.begin(), rt), ret;
}
static std::string which_unavailable() {
std::string ret= "";
if constexpr (semigroup_v<M>) ret+= "\"at\" ";
else ret+= "\"prod\" ";
if constexpr (!semigroup_v<M> || !commute_v<M>) ret+= "\"mul\" ";
if constexpr (!dual_v<M>) ret+= "\"apply\" ";
if constexpr (!reversible) ret+= "\"reverse\" ";
return ret;
}
template <class L= M> const std::enable_if_t<semigroup_v<L>, T> &operator[](size_t k) { return get(k); }
template <class L= M> std::enable_if_t<!semigroup_v<L>, T> &operator[](size_t k) { return at(k); }
const T &get(size_t k) { return splay(rt, k), rt->val; }
T &at(size_t k) {
static_assert(!semigroup_v<M>, "\"at\" is not available");
return splay(rt, k), rt->val;
}
void set(size_t k, const T &val) {
splay(rt, k), rt->val= val;
if constexpr (semigroup_v<M>) update<0>(rt);
}
void mul(size_t k, const T &val) {
static_assert(semigroup_v<M> && commute_v<M>, "\"mul\" is not available");
splay(rt, k), rt->val= M::op(rt->val, val), update<0>(rt);
}
const T &prod(size_t a, size_t b) {
static_assert(semigroup_v<M>, "\"prod\" is not available");
return between(a, b)->sum;
}
void apply(size_t a, size_t b, const E &x) {
static_assert(dual_v<M>, "\"apply\" is not available");
np t= between(a, b);
propagate(t, x);
if constexpr (semigroup_v<M>)
if (np p= t->par; p)
if (update<0>(p); p->par) update<0>(p->par);
}
void reverse() {
static_assert(reversible, "\"reverse\" is not available");
if (rt) toggle(rt);
}
void reverse(size_t a, size_t b) {
static_assert(reversible, "\"reverse\" is not available");
toggle(between(a, b));
}
std::pair<SplayTree, SplayTree> split(size_t k) {
if (!k) return {SplayTree(), *this};
if (size() == k) return {*this, SplayTree()};
splay(rt, k);
np l= rt->ch[0];
rt->ch[0]= l->par= nullptr, update(rt);
return {np_to(l), np_to(rt)};
}
std::tuple<SplayTree, SplayTree, SplayTree> split3(size_t a, size_t b) {
auto [tmp, right]= split(b);
auto [left, center]= tmp.split(a);
return {left, center, right};
}
SplayTree &operator+=(SplayTree rhs) {
if (!rt) rt= rhs.rt;
else if (rhs.rt) splay(rhs.rt, 0), rhs.rt->ch[0]= rt, rt->par= rhs.rt, rt= rhs.rt, update(rt);
return *this;
}
SplayTree operator+(SplayTree rhs) { return SplayTree(*this)+= rhs; }
void push_back(const T &val) {
if (rt) {
np t= new Node;
t->ch[0]= rt, rt->par= t, rt= t;
} else rt= new Node;
rt->val= val, update(rt);
}
void push_front(const T &val) {
if (rt) {
np t= new Node;
t->ch[1]= rt, rt->par= t, rt= t;
} else rt= new Node;
rt->val= val, update(rt);
}
void insert(size_t k, const T &val) {
assert(k <= size());
if (!k) return push_front(val);
if (k == rt->size()) return push_back(val);
splay(rt, k);
np l= std::exchange(rt->ch[0], nullptr);
update(rt);
np t= new Node;
t->ch[0]= l, t->ch[1]= rt, l->par= rt->par= t, t->val= val, rt= t, update(rt);
}
T pop_back() {
splay(rt, rt->size() - 1);
T v= std::exchange(rt, rt->ch[0])->val;
if (rt) rt->par= nullptr;
return v;
}
T pop_front() {
splay(rt, 0);
T v= std::exchange(rt, rt->ch[1])->val;
if (rt) rt->par= nullptr;
return v;
}
T erase(size_t k) {
if (!k) return pop_front();
if (k == rt->size() - 1) return pop_back();
splay(rt, k);
np l= rt->ch[0];
T v= std::exchange(rt, rt->ch[1])->val;
return rt->par= nullptr, splay(rt, 0), l->par= rt, rt->ch[0]= l, update(rt), v;
}
};
#line 5 "src/Math/mod_inv.hpp"
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 9 "test/yosupo/range_affine_range_sum.Splay.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RaffineQ_RsumQ {
using T= Mint;
using E= pair<Mint, Mint>;
static T op(const T &l, const T &r) { return l + r; }
static void mp(T &v, const E &f, std::size_t sz) { v= f.first * v + f.second * sz; }
static void cp(E &pre, const E &suf) { pre= {suf.first * pre.first, suf.first * pre.second + suf.second}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Mint v[N];
for (int i= 0; i < N; i++) cin >> v[i];
SplayTree<RaffineQ_RsumQ> st(v, v + N);
while (Q--) {
bool op;
int l, r;
cin >> op >> l >> r;
if (op) {
cout << st.prod(l, r) << '\n';
} else {
Mint b, c;
cin >> b >> c;
st.apply(l, r, {b, c});
}
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | example_00 |
![]() |
5 ms | 4 MB |
g++-13 | max_random_00 |
![]() |
1452 ms | 37 MB |
g++-13 | max_random_01 |
![]() |
1430 ms | 37 MB |
g++-13 | max_random_02 |
![]() |
1405 ms | 37 MB |
g++-13 | random_00 |
![]() |
1072 ms | 30 MB |
g++-13 | random_01 |
![]() |
1154 ms | 35 MB |
g++-13 | random_02 |
![]() |
701 ms | 7 MB |
g++-13 | small_00 |
![]() |
5 ms | 4 MB |
g++-13 | small_01 |
![]() |
5 ms | 4 MB |
g++-13 | small_02 |
![]() |
5 ms | 4 MB |
g++-13 | small_03 |
![]() |
5 ms | 3 MB |
g++-13 | small_04 |
![]() |
5 ms | 4 MB |
g++-13 | small_05 |
![]() |
5 ms | 3 MB |
g++-13 | small_06 |
![]() |
5 ms | 4 MB |
g++-13 | small_07 |
![]() |
5 ms | 3 MB |
g++-13 | small_08 |
![]() |
5 ms | 4 MB |
g++-13 | small_09 |
![]() |
5 ms | 4 MB |
g++-13 | small_random_00 |
![]() |
5 ms | 4 MB |
g++-13 | small_random_01 |
![]() |
5 ms | 4 MB |
clang++-18 | example_00 |
![]() |
5 ms | 4 MB |
clang++-18 | max_random_00 |
![]() |
1392 ms | 37 MB |
clang++-18 | max_random_01 |
![]() |
1378 ms | 37 MB |
clang++-18 | max_random_02 |
![]() |
1419 ms | 37 MB |
clang++-18 | random_00 |
![]() |
1098 ms | 30 MB |
clang++-18 | random_01 |
![]() |
1119 ms | 34 MB |
clang++-18 | random_02 |
![]() |
679 ms | 7 MB |
clang++-18 | small_00 |
![]() |
5 ms | 4 MB |
clang++-18 | small_01 |
![]() |
5 ms | 4 MB |
clang++-18 | small_02 |
![]() |
5 ms | 4 MB |
clang++-18 | small_03 |
![]() |
4 ms | 4 MB |
clang++-18 | small_04 |
![]() |
5 ms | 4 MB |
clang++-18 | small_05 |
![]() |
5 ms | 4 MB |
clang++-18 | small_06 |
![]() |
5 ms | 4 MB |
clang++-18 | small_07 |
![]() |
5 ms | 4 MB |
clang++-18 | small_08 |
![]() |
5 ms | 4 MB |
clang++-18 | small_09 |
![]() |
5 ms | 4 MB |
clang++-18 | small_random_00 |
![]() |
5 ms | 4 MB |
clang++-18 | small_random_01 |
![]() |
5 ms | 4 MB |