This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify
#include <iostream>
#include <array>
#include "src/Math/ModInt.hpp"
#include "src/DataStructure/WeightBalancedTree.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
using T= Mint;
using E= array<Mint, 2>;
static void mp(T &v, E x) { v= x[0] * v + x[1]; }
static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, Q;
cin >> N >> Q;
vector<Mint> a(N);
for (int i= 0; i < N; i++) cin >> a[i];
WeightBalancedTree<M> wbt(a);
while (Q--) {
int t;
cin >> t;
if (t) {
int i;
cin >> i;
cout << wbt[i] << '\n';
} else {
int l, r;
Mint b, c;
cin >> l >> r >> b >> c;
wbt.apply(l, r, {b, c});
}
}
return 0;
}
#line 1 "test/yosupo/range_affine_point_get.WBT.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify
#include <iostream>
#include <array>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/DataStructure/WeightBalancedTree.hpp"
#include <vector>
#line 4 "src/DataStructure/WeightBalancedTree.hpp"
#include <tuple>
#include <string>
#include <cstddef>
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
template <class, class= void> struct name: std::false_type {}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
template <class T, class= void> struct name { \
using type= type2; \
}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
using type= type1; \
}
#line 9 "src/DataStructure/WeightBalancedTree.hpp"
template <class M, bool reversible= false, bool persistent= false, size_t LEAF_SIZE= 1 << 20> class WeightBalancedTree {
_DETECT_BOOL(semigroup, typename T::T, decltype(&T::op));
_DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
_DETECT_BOOL(commute, typename T::commute);
_DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
_DETECT_TYPE(myself_or_T, typename T::T, T, typename T::T);
struct NodeMB {
std::array<int, 2> ch;
size_t sz;
};
template <class D, bool du> struct NodeMD: NodeMB {};
template <class D> struct NodeMD<D, 1>: NodeMB {
typename M::E laz;
};
template <class D, bool sg, bool rev, bool com> struct NodeMS: NodeMD<D, dual_v<M>> {
typename M::T sum;
};
template <class D, bool rev, bool com> struct NodeMS<D, 0, rev, com>: NodeMD<D, dual_v<M>> {};
template <class D> struct NodeMS<D, 1, 1, 0>: NodeMD<D, dual_v<M>> {
typename M::T sum, rsum;
};
using NodeM= NodeMS<void, semigroup_v<M>, reversible, commute_v<M>>;
using T= typename myself_or_T<M>::type;
using E= typename nullptr_or_E<M>::type;
using WBT= WeightBalancedTree;
static inline int nmi= 1, nli= 1;
static constexpr size_t M_SIZE= LEAF_SIZE * (persistent ? 9 : 2);
static constexpr size_t L_SIZE= persistent && (dual_v<M> || reversible) ? LEAF_SIZE * 9 : LEAF_SIZE;
static inline NodeM *nm= new NodeM[M_SIZE];
static inline T *nl= new T[L_SIZE];
int root;
static inline size_t msize(int i) {
if constexpr (dual_v<M> || reversible) return nm[i].sz & 0x3fffffff;
else return nm[i].sz;
}
static inline size_t size(int i) { return i < 0 ? 1 : msize(i); }
static inline T sum(int i) { return i < 0 ? nl[-i] : nm[i].sum; }
static inline T rsum(int i) { return i < 0 ? nl[-i] : nm[i].rsum; }
template <bool sz= 1> static inline void update(int i) {
auto t= nm + i;
auto [l, r]= t->ch;
if constexpr (sz) t->sz= size(l) + size(r);
if constexpr (semigroup_v<M>) {
t->sum= M::op(sum(l), sum(r));
if constexpr (reversible && !commute_v<M>) t->rsum= M::op(rsum(r), rsum(l));
}
}
static inline void map(T &v, E x, int sz) {
if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) M::mp(v, x, sz);
else M::mp(v, x);
}
static inline void propagate(int i, const E &x) {
auto t= nm + i;
if (t->sz >> 31) M::cp(t->laz, x);
else t->laz= x;
t->sz|= 0x80000000;
if constexpr (semigroup_v<M>) {
map(t->sum, x, t->sz & 0x3fffffff);
if constexpr (reversible && !commute_v<M>) map(t->rsum, x, t->sz & 0x3fffffff);
}
}
static inline void toggle(int i) {
auto t= nm + i;
if constexpr (semigroup_v<M> && !commute_v<M>) std::swap(t->sum, t->rsum);
std::swap(t->ch[0], t->ch[1]), t->sz^= 0x40000000;
}
static inline void _push(NodeM *t, int &c) {
if (c > 0) {
if constexpr (persistent) nm[nmi]= nm[c], c= nmi++;
if constexpr (dual_v<M>)
if (t->sz >> 31) propagate(c, t->laz);
if constexpr (reversible)
if (t->sz & 0x40000000) toggle(c);
} else if constexpr (dual_v<M>)
if (t->sz >> 31) {
if constexpr (persistent) nl[nli]= nl[-c], c= -nli++;
map(nl[-c], t->laz, 1);
}
}
static inline void push(int i) {
if (auto t= nm + i; t->sz >> 30) {
auto &[l, r]= t->ch;
_push(t, l), _push(t, r), t->sz&= 0x3fffffff;
}
}
template <bool r> static inline int join_(int t, int a, int b) {
if constexpr (dual_v<M> || reversible) push(a);
if constexpr (r) b= join(b, t, nm[a].ch[0]);
else b= join(nm[a].ch[1], t, b);
if constexpr (persistent) nm[nmi]= nm[a], a= nmi++;
if (size(nm[a].ch[r]) * 4 >= msize(b)) return nm[a].ch[!r]= b, update(a), a;
return nm[a].ch[!r]= nm[b].ch[r], update(a), nm[b].ch[r]= a, update(b), b;
}
template <bool b= 1> static inline int join(int l, int t, int r) {
int lsz= size(l), rsz= size(r);
if (lsz > rsz * 4) return join_<0>(t, l, r);
if (rsz > lsz * 4) return join_<1>(t, r, l);
return nm[t].ch= {l, r}, update(t), t;
}
static inline int merge(int l, int r) { return !l ? r : !r ? l : (++nmi, join(l, nmi - 1, r)); }
static inline std::array<int, 3> split_(int i, size_t k) {
if constexpr (dual_v<M> || reversible) push(i);
auto [l, r]= nm[i].ch;
size_t lsz= size(l);
if (k == lsz) return {l, i, r};
if constexpr (persistent) i= nmi++;
if (k < lsz) {
auto [a, b, c]= split_(l, k);
return {a, b, join(c, i, r)};
} else {
auto [a, b, c]= split_(r, k - lsz);
return {join(l, i, a), b, c};
}
}
static inline std::pair<int, int> split(int i, size_t k) {
if (k == 0) return {0, i};
if (k >= size(i)) return {i, 0};
auto [l, c, r]= split_(i, k);
return {l, r};
}
template <class S> static inline int build(size_t l, size_t r, const S &bg) {
if (r - l == 1) {
if constexpr (std::is_same_v<S, T>) return nl[nli]= bg, -nli++;
else return nl[nli]= *(bg + l), -nli++;
}
size_t m= (l + r) / 2, i= nmi++;
return nm[i].ch= {build(l, m, bg), build(m, r, bg)}, update(i), i;
}
static inline void dump(int i, typename std::vector<T>::iterator it) {
if (i < 0) *it= nl[-i];
else {
if constexpr (dual_v<M> || reversible) push(i);
dump(nm[i].ch[0], it), dump(nm[i].ch[1], it + size(nm[i].ch[0]));
}
}
static inline T prod(int i, size_t l, size_t r) {
if (i < 0) return nl[-i];
if (l <= 0 && msize(i) <= r) return nm[i].sum;
if constexpr (dual_v<M> || reversible) push(i);
auto [n0, n1]= nm[i].ch;
size_t lsz= size(n0);
if (r <= lsz) return prod(n0, l, r);
if (lsz <= l) return prod(n1, l - lsz, r - lsz);
return M::op(prod(n0, l, lsz), prod(n1, 0, r - lsz));
}
static inline void apply(int &i, size_t l, size_t r, const E &x) {
if (i < 0) {
if constexpr (persistent) nl[nli]= nl[-i], i= -nli++;
map(nl[-i], x, 1);
return;
}
if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
if (l <= 0 && msize(i) <= r) return propagate(i, x);
push(i);
auto &[n0, n1]= nm[i].ch;
size_t lsz= size(n0);
if (r <= lsz) apply(n0, l, r, x);
else if (lsz <= l) apply(n1, l - lsz, r - lsz, x);
else apply(n0, l, lsz, x), apply(n1, 0, r - lsz, x);
if constexpr (semigroup_v<M>) update<0>(i);
}
static inline void set_val(int &i, size_t k, const T &x) {
if (i < 0) {
if constexpr (persistent) nl[nli]= x, i= -nli++;
else nl[-i]= x;
return;
}
if constexpr (dual_v<M> || reversible) push(i);
if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
auto &[l, r]= nm[i].ch;
size_t lsz= size(l);
lsz > k ? set_val(l, k, x) : set_val(r, k - lsz, x);
if constexpr (semigroup_v<M>) update<0>(i);
}
static inline void mul_val(int &i, size_t k, const T &x) {
if (i < 0) {
if constexpr (persistent) nl[nli]= M::op(nl[-i], x), i= -nli++;
else nl[-i]= M::op(nl[-i], x);
return;
}
if constexpr (dual_v<M> || reversible) push(i);
if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
auto &[l, r]= nm[i].ch;
size_t lsz= size(l);
lsz > k ? mul_val(l, k, x) : mul_val(r, k - lsz, x);
update<0>(i);
}
static inline T get_val(int i, size_t k) {
if (i < 0) return nl[-i];
if constexpr (dual_v<M> || reversible) push(i);
auto [l, r]= nm[i].ch;
size_t lsz= size(l);
return lsz > k ? get_val(l, k) : get_val(r, k - lsz);
}
static inline T &at_val(int i, size_t k) {
if (i < 0) {
if constexpr (persistent) return nl[nli++]= nl[-i];
else return nl[-i];
}
if constexpr (dual_v<M> || reversible) push(i);
if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
auto [l, r]= nm[i].ch;
size_t lsz= size(l);
return lsz > k ? at_val(l, k) : at_val(r, k - lsz);
}
static inline WBT id_to_wbt(int t) {
WBT ret;
return ret.root= t, ret;
}
public:
WeightBalancedTree(): root(0) {}
WeightBalancedTree(size_t n, const T &val= T()): root(n ? build(0, n, val) : 0) {}
WeightBalancedTree(const T *bg, const T *ed): root(bg == ed ? 0 : build(0, ed - bg, bg)) {}
WeightBalancedTree(const std::vector<T> &ar): WeightBalancedTree(ar.data(), ar.data() + ar.size()) {};
WBT &operator+=(WBT rhs) { return root= merge(root, rhs.root), *this; }
WBT operator+(WBT rhs) { return WBT(*this)+= rhs; }
std::pair<WBT, WBT> split(size_t k) {
assert(k <= size());
auto [l, r]= split(root, k);
return {id_to_wbt(l), id_to_wbt(r)};
}
std::tuple<WBT, WBT, WBT> split3(size_t a, size_t b) {
assert(a < b), assert(b <= size());
auto [tmp, r]= split(root, b);
auto [l, c]= split(tmp, a);
return {id_to_wbt(l), id_to_wbt(c), id_to_wbt(r)};
}
size_t size() const { return root ? size(root) : 0; }
void insert(size_t k, const T &val) {
auto [l, r]= split(root, k);
nl[nli]= val, root= merge(merge(l, -nli++), r);
}
void push_back(const T &val) { nl[nli]= val, root= merge(root, -nli++); }
void push_front(const T &val) { nl[nli]= val, root= merge(-nli++, root); }
T erase(size_t k) {
assert(k < size());
auto [l, tmp]= split(root, k);
auto [t, r]= split(tmp, 1);
return root= merge(l, r), nl[-t];
}
T pop_back() {
auto [l, t]= split(root, size() - 1);
return root= l, nl[-t];
}
T pop_front() {
auto [t, r]= split(root, 1);
return root= r, nl[-t];
}
void set(size_t k, const T &val) { set_val(root, k, val); }
void mul(size_t k, const T &val) {
static_assert(semigroup_v<M> && commute_v<M>, "\"mul\" is not available\n");
mul_val(root, k, val);
}
T get(size_t k) { return get_val(root, k); }
T &at(size_t k) {
static_assert(!semigroup_v<M>, "\"at\" is not available\n");
return at_val(root, k);
}
template <class L= M> std::enable_if_t<semigroup_v<L>, T> operator[](size_t k) { return get(k); }
template <class L= M> std::enable_if_t<!semigroup_v<L>, T> &operator[](size_t k) { return at(k); }
T prod(size_t a, size_t b) {
static_assert(semigroup_v<M>, "\"prod\" is not available\n");
return prod(root, a, b);
}
void apply(size_t a, size_t b, E x) {
static_assert(dual_v<M>, "\"apply\" is not available\n");
apply(root, a, b, x);
}
void reverse() {
static_assert(reversible, "\"reverse\" is not available\n");
if (root <= 0) return;
if constexpr (persistent) nm[nmi]= nm[root], root= nmi++;
toggle(root);
}
void reverse(size_t a, size_t b) {
static_assert(reversible, "\"reverse\" is not available\n");
assert(a < b), assert(b <= size());
if (b - a == 1) return;
auto [tmp, r]= split(root, b);
auto [l, c]= split(tmp, a);
if constexpr (persistent) nm[nmi]= nm[c], c= nmi++;
toggle(c);
root= merge(merge(l, c), r);
}
std::vector<T> dump() {
if (!root) return std::vector<T>();
std::vector<T> ret(size());
return dump(root, ret.begin()), ret;
}
void clear() { root= 0; }
static void reset() { nmi= 1, nli= 1; }
static std::string which_unavailable() {
std::string ret= "";
if constexpr (semigroup_v<M>) ret+= "\"at\" ";
else ret+= "\"prod\" ";
if constexpr (!semigroup_v<M> || !commute_v<M>) ret+= "\"mul\" ";
if constexpr (!dual_v<M>) ret+= "\"apply\" ";
if constexpr (!reversible) ret+= "\"reverse\" ";
return ret;
}
static bool pool_empty() {
if constexpr (persistent && (dual_v<M> || reversible)) return nmi + LEAF_SIZE >= M_SIZE || nli + LEAF_SIZE >= L_SIZE;
else return nmi + 1000u >= M_SIZE || nli + 1000u >= L_SIZE;
}
};
#line 10 "test/yosupo/range_affine_point_get.WBT.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
using T= Mint;
using E= array<Mint, 2>;
static void mp(T &v, E x) { v= x[0] * v + x[1]; }
static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, Q;
cin >> N >> Q;
vector<Mint> a(N);
for (int i= 0; i < N; i++) cin >> a[i];
WeightBalancedTree<M> wbt(a);
while (Q--) {
int t;
cin >> t;
if (t) {
int i;
cin >> i;
cout << wbt[i] << '\n';
} else {
int l, r;
Mint b, c;
cin >> l >> r >> b >> c;
wbt.apply(l, r, {b, c});
}
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | example_00 |
![]() |
12 ms | 57 MB |
g++-13 | max_random_00 |
![]() |
441 ms | 59 MB |
g++-13 | max_random_01 |
![]() |
443 ms | 59 MB |
g++-13 | max_random_02 |
![]() |
457 ms | 59 MB |
g++-13 | random_00 |
![]() |
353 ms | 58 MB |
g++-13 | random_01 |
![]() |
365 ms | 58 MB |
g++-13 | random_02 |
![]() |
264 ms | 57 MB |
g++-13 | small_00 |
![]() |
12 ms | 57 MB |
g++-13 | small_01 |
![]() |
12 ms | 57 MB |
g++-13 | small_02 |
![]() |
12 ms | 57 MB |
g++-13 | small_03 |
![]() |
12 ms | 57 MB |
g++-13 | small_04 |
![]() |
12 ms | 57 MB |
g++-13 | small_05 |
![]() |
12 ms | 57 MB |
g++-13 | small_06 |
![]() |
12 ms | 57 MB |
g++-13 | small_07 |
![]() |
12 ms | 57 MB |
g++-13 | small_08 |
![]() |
12 ms | 57 MB |
g++-13 | small_09 |
![]() |
12 ms | 57 MB |
g++-13 | small_random_00 |
![]() |
12 ms | 57 MB |
g++-13 | small_random_01 |
![]() |
12 ms | 57 MB |
clang++-18 | example_00 |
![]() |
12 ms | 57 MB |
clang++-18 | max_random_00 |
![]() |
424 ms | 59 MB |
clang++-18 | max_random_01 |
![]() |
433 ms | 59 MB |
clang++-18 | max_random_02 |
![]() |
425 ms | 59 MB |
clang++-18 | random_00 |
![]() |
340 ms | 58 MB |
clang++-18 | random_01 |
![]() |
356 ms | 58 MB |
clang++-18 | random_02 |
![]() |
248 ms | 57 MB |
clang++-18 | small_00 |
![]() |
12 ms | 57 MB |
clang++-18 | small_01 |
![]() |
12 ms | 57 MB |
clang++-18 | small_02 |
![]() |
12 ms | 57 MB |
clang++-18 | small_03 |
![]() |
12 ms | 57 MB |
clang++-18 | small_04 |
![]() |
12 ms | 57 MB |
clang++-18 | small_05 |
![]() |
12 ms | 57 MB |
clang++-18 | small_06 |
![]() |
12 ms | 57 MB |
clang++-18 | small_07 |
![]() |
12 ms | 57 MB |
clang++-18 | small_08 |
![]() |
12 ms | 57 MB |
clang++-18 | small_09 |
![]() |
12 ms | 57 MB |
clang++-18 | small_random_00 |
![]() |
12 ms | 57 MB |
clang++-18 | small_random_01 |
![]() |
12 ms | 57 MB |