Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/yosupo/range_affine_point_get.WBT.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify

#include <iostream>
#include <array>
#include "src/Math/ModInt.hpp"
#include "src/DataStructure/WeightBalancedTree.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
 using T= Mint;
 using E= array<Mint, 2>;
 static void mp(T &v, E x) { v= x[0] * v + x[1]; }
 static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N, Q;
 cin >> N >> Q;
 vector<Mint> a(N);
 for (int i= 0; i < N; i++) cin >> a[i];
 WeightBalancedTree<M> wbt(a);
 while (Q--) {
  int t;
  cin >> t;
  if (t) {
   int i;
   cin >> i;
   cout << wbt[i] << '\n';
  } else {
   int l, r;
   Mint b, c;
   cin >> l >> r >> b >> c;
   wbt.apply(l, r, {b, c});
  }
 }
 return 0;
}
#line 1 "test/yosupo/range_affine_point_get.WBT.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify

#include <iostream>
#include <array>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
 std::make_signed_t<Uint> x= 1, y= 0, z= 0;
 for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
 return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na {  // mod < 2^32
 u32 mod;
 constexpr MP_Na(): mod(0) {}
 constexpr MP_Na(u32 m): mod(m) {}
 constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
 constexpr inline u32 set(u32 n) const { return n; }
 constexpr inline u32 get(u32 n) const { return n; }
 constexpr inline u32 norm(u32 n) const { return n; }
 constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo {  // mod < 2^32, mod < 2^62
 u_t mod;
 constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
 constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
 constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
 constexpr inline u_t set(u_t n) const { return mul(n, r2); }
 constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
 constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
 constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
 u_t iv, r2;
 static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
 constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br {  // 2^20 < mod <= 2^41
 u64 mod;
 constexpr MP_Br(): mod(0), x(0) {}
 constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
 static constexpr inline u64 set(u64 n) { return n; }
 constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
 u64 x;
 constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
 constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 {  // mod < 2^63, mod < 2^64
 u64 mod;
 constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
 constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
 constexpr inline u64 set(u64 n) const { return n; }
 constexpr inline u64 get(u64 n) const { return n; }
 constexpr inline u64 norm(u64 n) const { return n; }
 constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
 u8 s;
 u64 d, v;
 constexpr inline u64 rem(const u128 &u) const {
  u128 q= (u >> 64) * v + u;
  u64 r= u64(u) - (q >> 64) * d - d;
  if (r > u64(q)) r+= d;
  if (r >= d) r-= d;
  return r;
 }
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
 for (u_t ret= md.set(1);; x= md.mul(x, x))
  if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
 static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
 using Uint= U;
 static constexpr inline auto mod() { return B::md.mod; }
 constexpr MInt(): x(0) {}
 template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
 constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
 constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
 constexpr MInt name const { \
  MInt ret; \
  return ret.x= op, ret; \
 }
 FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
 FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
 FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
 FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
 constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
 constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
 constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
 constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
 constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
 constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
 constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
 constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
 constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
 constexpr inline Uint val() const { return B::md.get(x); }
 friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
 friend istream &operator>>(istream &is, MInt &r) {
  i64 v;
  return is >> v, r= MInt(v), is;
 }
private:
 Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/DataStructure/WeightBalancedTree.hpp"
#include <vector>
#line 4 "src/DataStructure/WeightBalancedTree.hpp"
#include <tuple>
#include <string>
#include <cstddef>
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
 template <class, class= void> struct name: std::false_type {}; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
 template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
 template <class T, class= void> struct name { \
  using type= type2; \
 }; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
  using type= type1; \
 }
#line 9 "src/DataStructure/WeightBalancedTree.hpp"
template <class M, bool reversible= false, bool persistent= false, size_t LEAF_SIZE= 1 << 20> class WeightBalancedTree {
 _DETECT_BOOL(semigroup, typename T::T, decltype(&T::op));
 _DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
 _DETECT_BOOL(commute, typename T::commute);
 _DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
 _DETECT_TYPE(myself_or_T, typename T::T, T, typename T::T);
 struct NodeMB {
  std::array<int, 2> ch;
  size_t sz;
 };
 template <class D, bool du> struct NodeMD: NodeMB {};
 template <class D> struct NodeMD<D, 1>: NodeMB {
  typename M::E laz;
 };
 template <class D, bool sg, bool rev, bool com> struct NodeMS: NodeMD<D, dual_v<M>> {
  typename M::T sum;
 };
 template <class D, bool rev, bool com> struct NodeMS<D, 0, rev, com>: NodeMD<D, dual_v<M>> {};
 template <class D> struct NodeMS<D, 1, 1, 0>: NodeMD<D, dual_v<M>> {
  typename M::T sum, rsum;
 };
 using NodeM= NodeMS<void, semigroup_v<M>, reversible, commute_v<M>>;
 using T= typename myself_or_T<M>::type;
 using E= typename nullptr_or_E<M>::type;
 using WBT= WeightBalancedTree;
 static inline int nmi= 1, nli= 1;
 static constexpr size_t M_SIZE= LEAF_SIZE * (persistent ? 9 : 2);
 static constexpr size_t L_SIZE= persistent && (dual_v<M> || reversible) ? LEAF_SIZE * 9 : LEAF_SIZE;
 static inline NodeM *nm= new NodeM[M_SIZE];
 static inline T *nl= new T[L_SIZE];
 int root;
 static inline size_t msize(int i) {
  if constexpr (dual_v<M> || reversible) return nm[i].sz & 0x3fffffff;
  else return nm[i].sz;
 }
 static inline size_t size(int i) { return i < 0 ? 1 : msize(i); }
 static inline T sum(int i) { return i < 0 ? nl[-i] : nm[i].sum; }
 static inline T rsum(int i) { return i < 0 ? nl[-i] : nm[i].rsum; }
 template <bool sz= 1> static inline void update(int i) {
  auto t= nm + i;
  auto [l, r]= t->ch;
  if constexpr (sz) t->sz= size(l) + size(r);
  if constexpr (semigroup_v<M>) {
   t->sum= M::op(sum(l), sum(r));
   if constexpr (reversible && !commute_v<M>) t->rsum= M::op(rsum(r), rsum(l));
  }
 }
 static inline void map(T &v, E x, int sz) {
  if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) M::mp(v, x, sz);
  else M::mp(v, x);
 }
 static inline void propagate(int i, const E &x) {
  auto t= nm + i;
  if (t->sz >> 31) M::cp(t->laz, x);
  else t->laz= x;
  t->sz|= 0x80000000;
  if constexpr (semigroup_v<M>) {
   map(t->sum, x, t->sz & 0x3fffffff);
   if constexpr (reversible && !commute_v<M>) map(t->rsum, x, t->sz & 0x3fffffff);
  }
 }
 static inline void toggle(int i) {
  auto t= nm + i;
  if constexpr (semigroup_v<M> && !commute_v<M>) std::swap(t->sum, t->rsum);
  std::swap(t->ch[0], t->ch[1]), t->sz^= 0x40000000;
 }
 static inline void _push(NodeM *t, int &c) {
  if (c > 0) {
   if constexpr (persistent) nm[nmi]= nm[c], c= nmi++;
   if constexpr (dual_v<M>)
    if (t->sz >> 31) propagate(c, t->laz);
   if constexpr (reversible)
    if (t->sz & 0x40000000) toggle(c);
  } else if constexpr (dual_v<M>)
   if (t->sz >> 31) {
    if constexpr (persistent) nl[nli]= nl[-c], c= -nli++;
    map(nl[-c], t->laz, 1);
   }
 }
 static inline void push(int i) {
  if (auto t= nm + i; t->sz >> 30) {
   auto &[l, r]= t->ch;
   _push(t, l), _push(t, r), t->sz&= 0x3fffffff;
  }
 }
 template <bool r> static inline int join_(int t, int a, int b) {
  if constexpr (dual_v<M> || reversible) push(a);
  if constexpr (r) b= join(b, t, nm[a].ch[0]);
  else b= join(nm[a].ch[1], t, b);
  if constexpr (persistent) nm[nmi]= nm[a], a= nmi++;
  if (size(nm[a].ch[r]) * 4 >= msize(b)) return nm[a].ch[!r]= b, update(a), a;
  return nm[a].ch[!r]= nm[b].ch[r], update(a), nm[b].ch[r]= a, update(b), b;
 }
 template <bool b= 1> static inline int join(int l, int t, int r) {
  int lsz= size(l), rsz= size(r);
  if (lsz > rsz * 4) return join_<0>(t, l, r);
  if (rsz > lsz * 4) return join_<1>(t, r, l);
  return nm[t].ch= {l, r}, update(t), t;
 }
 static inline int merge(int l, int r) { return !l ? r : !r ? l : (++nmi, join(l, nmi - 1, r)); }
 static inline std::array<int, 3> split_(int i, size_t k) {
  if constexpr (dual_v<M> || reversible) push(i);
  auto [l, r]= nm[i].ch;
  size_t lsz= size(l);
  if (k == lsz) return {l, i, r};
  if constexpr (persistent) i= nmi++;
  if (k < lsz) {
   auto [a, b, c]= split_(l, k);
   return {a, b, join(c, i, r)};
  } else {
   auto [a, b, c]= split_(r, k - lsz);
   return {join(l, i, a), b, c};
  }
 }
 static inline std::pair<int, int> split(int i, size_t k) {
  if (k == 0) return {0, i};
  if (k >= size(i)) return {i, 0};
  auto [l, c, r]= split_(i, k);
  return {l, r};
 }
 template <class S> static inline int build(size_t l, size_t r, const S &bg) {
  if (r - l == 1) {
   if constexpr (std::is_same_v<S, T>) return nl[nli]= bg, -nli++;
   else return nl[nli]= *(bg + l), -nli++;
  }
  size_t m= (l + r) / 2, i= nmi++;
  return nm[i].ch= {build(l, m, bg), build(m, r, bg)}, update(i), i;
 }
 static inline void dump(int i, typename std::vector<T>::iterator it) {
  if (i < 0) *it= nl[-i];
  else {
   if constexpr (dual_v<M> || reversible) push(i);
   dump(nm[i].ch[0], it), dump(nm[i].ch[1], it + size(nm[i].ch[0]));
  }
 }
 static inline T prod(int i, size_t l, size_t r) {
  if (i < 0) return nl[-i];
  if (l <= 0 && msize(i) <= r) return nm[i].sum;
  if constexpr (dual_v<M> || reversible) push(i);
  auto [n0, n1]= nm[i].ch;
  size_t lsz= size(n0);
  if (r <= lsz) return prod(n0, l, r);
  if (lsz <= l) return prod(n1, l - lsz, r - lsz);
  return M::op(prod(n0, l, lsz), prod(n1, 0, r - lsz));
 }
 static inline void apply(int &i, size_t l, size_t r, const E &x) {
  if (i < 0) {
   if constexpr (persistent) nl[nli]= nl[-i], i= -nli++;
   map(nl[-i], x, 1);
   return;
  }
  if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
  if (l <= 0 && msize(i) <= r) return propagate(i, x);
  push(i);
  auto &[n0, n1]= nm[i].ch;
  size_t lsz= size(n0);
  if (r <= lsz) apply(n0, l, r, x);
  else if (lsz <= l) apply(n1, l - lsz, r - lsz, x);
  else apply(n0, l, lsz, x), apply(n1, 0, r - lsz, x);
  if constexpr (semigroup_v<M>) update<0>(i);
 }
 static inline void set_val(int &i, size_t k, const T &x) {
  if (i < 0) {
   if constexpr (persistent) nl[nli]= x, i= -nli++;
   else nl[-i]= x;
   return;
  }
  if constexpr (dual_v<M> || reversible) push(i);
  if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
  auto &[l, r]= nm[i].ch;
  size_t lsz= size(l);
  lsz > k ? set_val(l, k, x) : set_val(r, k - lsz, x);
  if constexpr (semigroup_v<M>) update<0>(i);
 }
 static inline void mul_val(int &i, size_t k, const T &x) {
  if (i < 0) {
   if constexpr (persistent) nl[nli]= M::op(nl[-i], x), i= -nli++;
   else nl[-i]= M::op(nl[-i], x);
   return;
  }
  if constexpr (dual_v<M> || reversible) push(i);
  if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
  auto &[l, r]= nm[i].ch;
  size_t lsz= size(l);
  lsz > k ? mul_val(l, k, x) : mul_val(r, k - lsz, x);
  update<0>(i);
 }
 static inline T get_val(int i, size_t k) {
  if (i < 0) return nl[-i];
  if constexpr (dual_v<M> || reversible) push(i);
  auto [l, r]= nm[i].ch;
  size_t lsz= size(l);
  return lsz > k ? get_val(l, k) : get_val(r, k - lsz);
 }
 static inline T &at_val(int i, size_t k) {
  if (i < 0) {
   if constexpr (persistent) return nl[nli++]= nl[-i];
   else return nl[-i];
  }
  if constexpr (dual_v<M> || reversible) push(i);
  if constexpr (persistent) nm[nmi]= nm[i], i= nmi++;
  auto [l, r]= nm[i].ch;
  size_t lsz= size(l);
  return lsz > k ? at_val(l, k) : at_val(r, k - lsz);
 }
 static inline WBT id_to_wbt(int t) {
  WBT ret;
  return ret.root= t, ret;
 }
public:
 WeightBalancedTree(): root(0) {}
 WeightBalancedTree(size_t n, const T &val= T()): root(n ? build(0, n, val) : 0) {}
 WeightBalancedTree(const T *bg, const T *ed): root(bg == ed ? 0 : build(0, ed - bg, bg)) {}
 WeightBalancedTree(const std::vector<T> &ar): WeightBalancedTree(ar.data(), ar.data() + ar.size()) {};
 WBT &operator+=(WBT rhs) { return root= merge(root, rhs.root), *this; }
 WBT operator+(WBT rhs) { return WBT(*this)+= rhs; }
 std::pair<WBT, WBT> split(size_t k) {
  assert(k <= size());
  auto [l, r]= split(root, k);
  return {id_to_wbt(l), id_to_wbt(r)};
 }
 std::tuple<WBT, WBT, WBT> split3(size_t a, size_t b) {
  assert(a < b), assert(b <= size());
  auto [tmp, r]= split(root, b);
  auto [l, c]= split(tmp, a);
  return {id_to_wbt(l), id_to_wbt(c), id_to_wbt(r)};
 }
 size_t size() const { return root ? size(root) : 0; }
 void insert(size_t k, const T &val) {
  auto [l, r]= split(root, k);
  nl[nli]= val, root= merge(merge(l, -nli++), r);
 }
 void push_back(const T &val) { nl[nli]= val, root= merge(root, -nli++); }
 void push_front(const T &val) { nl[nli]= val, root= merge(-nli++, root); }
 T erase(size_t k) {
  assert(k < size());
  auto [l, tmp]= split(root, k);
  auto [t, r]= split(tmp, 1);
  return root= merge(l, r), nl[-t];
 }
 T pop_back() {
  auto [l, t]= split(root, size() - 1);
  return root= l, nl[-t];
 }
 T pop_front() {
  auto [t, r]= split(root, 1);
  return root= r, nl[-t];
 }
 void set(size_t k, const T &val) { set_val(root, k, val); }
 void mul(size_t k, const T &val) {
  static_assert(semigroup_v<M> && commute_v<M>, "\"mul\" is not available\n");
  mul_val(root, k, val);
 }
 T get(size_t k) { return get_val(root, k); }
 T &at(size_t k) {
  static_assert(!semigroup_v<M>, "\"at\" is not available\n");
  return at_val(root, k);
 }
 template <class L= M> std::enable_if_t<semigroup_v<L>, T> operator[](size_t k) { return get(k); }
 template <class L= M> std::enable_if_t<!semigroup_v<L>, T> &operator[](size_t k) { return at(k); }
 T prod(size_t a, size_t b) {
  static_assert(semigroup_v<M>, "\"prod\" is not available\n");
  return prod(root, a, b);
 }
 void apply(size_t a, size_t b, E x) {
  static_assert(dual_v<M>, "\"apply\" is not available\n");
  apply(root, a, b, x);
 }
 void reverse() {
  static_assert(reversible, "\"reverse\" is not available\n");
  if (root <= 0) return;
  if constexpr (persistent) nm[nmi]= nm[root], root= nmi++;
  toggle(root);
 }
 void reverse(size_t a, size_t b) {
  static_assert(reversible, "\"reverse\" is not available\n");
  assert(a < b), assert(b <= size());
  if (b - a == 1) return;
  auto [tmp, r]= split(root, b);
  auto [l, c]= split(tmp, a);
  if constexpr (persistent) nm[nmi]= nm[c], c= nmi++;
  toggle(c);
  root= merge(merge(l, c), r);
 }
 std::vector<T> dump() {
  if (!root) return std::vector<T>();
  std::vector<T> ret(size());
  return dump(root, ret.begin()), ret;
 }
 void clear() { root= 0; }
 static void reset() { nmi= 1, nli= 1; }
 static std::string which_unavailable() {
  std::string ret= "";
  if constexpr (semigroup_v<M>) ret+= "\"at\" ";
  else ret+= "\"prod\" ";
  if constexpr (!semigroup_v<M> || !commute_v<M>) ret+= "\"mul\" ";
  if constexpr (!dual_v<M>) ret+= "\"apply\" ";
  if constexpr (!reversible) ret+= "\"reverse\" ";
  return ret;
 }
 static bool pool_empty() {
  if constexpr (persistent && (dual_v<M> || reversible)) return nmi + LEAF_SIZE >= M_SIZE || nli + LEAF_SIZE >= L_SIZE;
  else return nmi + 1000u >= M_SIZE || nli + 1000u >= L_SIZE;
 }
};
#line 10 "test/yosupo/range_affine_point_get.WBT.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
 using T= Mint;
 using E= array<Mint, 2>;
 static void mp(T &v, E x) { v= x[0] * v + x[1]; }
 static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N, Q;
 cin >> N >> Q;
 vector<Mint> a(N);
 for (int i= 0; i < N; i++) cin >> a[i];
 WeightBalancedTree<M> wbt(a);
 while (Q--) {
  int t;
  cin >> t;
  if (t) {
   int i;
   cin >> i;
   cout << wbt[i] << '\n';
  } else {
   int l, r;
   Mint b, c;
   cin >> l >> r >> b >> c;
   wbt.apply(l, r, {b, c});
  }
 }
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 example_00 :heavy_check_mark: AC 12 ms 57 MB
g++-13 max_random_00 :heavy_check_mark: AC 441 ms 59 MB
g++-13 max_random_01 :heavy_check_mark: AC 443 ms 59 MB
g++-13 max_random_02 :heavy_check_mark: AC 457 ms 59 MB
g++-13 random_00 :heavy_check_mark: AC 353 ms 58 MB
g++-13 random_01 :heavy_check_mark: AC 365 ms 58 MB
g++-13 random_02 :heavy_check_mark: AC 264 ms 57 MB
g++-13 small_00 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_01 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_02 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_03 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_04 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_05 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_06 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_07 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_08 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_09 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_random_00 :heavy_check_mark: AC 12 ms 57 MB
g++-13 small_random_01 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 example_00 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 max_random_00 :heavy_check_mark: AC 424 ms 59 MB
clang++-18 max_random_01 :heavy_check_mark: AC 433 ms 59 MB
clang++-18 max_random_02 :heavy_check_mark: AC 425 ms 59 MB
clang++-18 random_00 :heavy_check_mark: AC 340 ms 58 MB
clang++-18 random_01 :heavy_check_mark: AC 356 ms 58 MB
clang++-18 random_02 :heavy_check_mark: AC 248 ms 57 MB
clang++-18 small_00 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_01 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_02 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_03 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_04 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_05 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_06 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_07 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_08 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_09 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_random_00 :heavy_check_mark: AC 12 ms 57 MB
clang++-18 small_random_01 :heavy_check_mark: AC 12 ms 57 MB
Back to top page