Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:x: test/yosupo/range_affine_point_get.Splay.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify

#include <iostream>
#include <array>
#include "src/Math/ModInt.hpp"
#include "src/DataStructure/SplayTree.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
 using T= Mint;
 using E= array<Mint, 2>;
 static void mp(T &v, E x) { v= x[0] * v + x[1]; }
 static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N, Q;
 cin >> N >> Q;
 vector<Mint> a(N);
 for (int i= 0; i < N; i++) cin >> a[i];
 SplayTree<M> splay(a);
 while (Q--) {
  int t;
  cin >> t;
  if (t) {
   int i;
   cin >> i;
   cout << splay[i] << '\n';
  } else {
   int l, r;
   Mint b, c;
   cin >> l >> r >> b >> c;
   splay.apply(l, r, {b, c});
  }
 }
 return 0;
}
#line 1 "test/yosupo/range_affine_point_get.Splay.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// 双対 の verify

#include <iostream>
#include <array>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
 std::make_signed_t<Uint> x= 1, y= 0, z= 0;
 for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
 return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na {  // mod < 2^32
 u32 mod;
 constexpr MP_Na(): mod(0) {}
 constexpr MP_Na(u32 m): mod(m) {}
 constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
 constexpr inline u32 set(u32 n) const { return n; }
 constexpr inline u32 get(u32 n) const { return n; }
 constexpr inline u32 norm(u32 n) const { return n; }
 constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo {  // mod < 2^32, mod < 2^62
 u_t mod;
 constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
 constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
 constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
 constexpr inline u_t set(u_t n) const { return mul(n, r2); }
 constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
 constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
 constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
 u_t iv, r2;
 static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
 constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br {  // 2^20 < mod <= 2^41
 u64 mod;
 constexpr MP_Br(): mod(0), x(0) {}
 constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
 static constexpr inline u64 set(u64 n) { return n; }
 constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
 u64 x;
 constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
 constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 {  // mod < 2^63, mod < 2^64
 u64 mod;
 constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
 constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
 constexpr inline u64 set(u64 n) const { return n; }
 constexpr inline u64 get(u64 n) const { return n; }
 constexpr inline u64 norm(u64 n) const { return n; }
 constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
 u8 s;
 u64 d, v;
 constexpr inline u64 rem(const u128 &u) const {
  u128 q= (u >> 64) * v + u;
  u64 r= u64(u) - (q >> 64) * d - d;
  if (r > u64(q)) r+= d;
  if (r >= d) r-= d;
  return r;
 }
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
 for (u_t ret= md.set(1);; x= md.mul(x, x))
  if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
 static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
 using Uint= U;
 static constexpr inline auto mod() { return B::md.mod; }
 constexpr MInt(): x(0) {}
 template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
 constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
 constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
 constexpr MInt name const { \
  MInt ret; \
  return ret.x= op, ret; \
 }
 FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
 FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
 FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
 FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
 constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
 constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
 constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
 constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
 constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
 constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
 constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
 constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
 constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
 constexpr inline Uint val() const { return B::md.get(x); }
 friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
 friend istream &operator>>(istream &is, MInt &r) {
  i64 v;
  return is >> v, r= MInt(v), is;
 }
private:
 Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/DataStructure/SplayTree.hpp"
#include <vector>
#include <string>
#line 5 "src/DataStructure/SplayTree.hpp"
#include <tuple>
#line 7 "src/DataStructure/SplayTree.hpp"
#include <cstddef>
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
 template <class, class= void> struct name: std::false_type {}; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
 template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
 template <class T, class= void> struct name { \
  using type= type2; \
 }; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
  using type= type1; \
 }
#line 10 "src/DataStructure/SplayTree.hpp"
template <class M, bool reversible= false> class SplayTree {
 _DETECT_BOOL(semigroup, typename T::T, decltype(&T::op));
 _DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
 _DETECT_BOOL(commute, typename T::commute);
 _DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
 _DETECT_TYPE(myself_or_T, typename T::T, T, typename T::T);
 using T= typename myself_or_T<M>::type;
 using E= typename nullptr_or_E<M>::type;
 template <class D> struct NodeB {
  T val;
  D *ch[2]= {nullptr, nullptr}, *par= nullptr;
  size_t sz= 0;
 };
 template <class D, bool du> struct NodeD: NodeB<D> {};
 template <class D> struct NodeD<D, 1>: NodeB<D> {
  E laz;
 };
 template <class D, bool sg, bool rev, bool com> struct NodeS: NodeD<D, dual_v<M>> {};
 template <class D, bool rev, bool com> struct NodeS<D, 1, rev, com>: NodeD<D, dual_v<M>> {
  T sum;
 };
 template <class D> struct NodeS<D, 1, 1, 0>: NodeD<D, dual_v<M>> {
  T sum, rsum;
 };
 struct Node: NodeS<Node, semigroup_v<M>, reversible, commute_v<M>> {
  size_t size() const {
   if constexpr (dual_v<M> || reversible) return this->sz & 0x3fffffff;
   else return this->sz;
  }
 };
 using np= Node *;
 np rt;
 template <class S> static inline np build(size_t bg, size_t ed, np par, const S &val) {
  if (bg == ed) return nullptr;
  size_t mid= bg + (ed - bg) / 2;
  np t= new Node;
  if constexpr (std::is_same_v<S, T>) t->val= val;
  else t->val= val[mid];
  return t->par= par, t->ch[0]= build(bg, mid, t, val), t->ch[1]= build(mid + 1, ed, t, val), update(t), t;
 }
 static inline void dump(typename std::vector<T>::iterator itr, np t) {
  if (!t) return;
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t sz= t->ch[0] ? t->ch[0]->size() : 0;
  *(itr + sz)= t->val, dump(itr, t->ch[0]), dump(itr + sz + 1, t->ch[1]);
 }
 template <bool sz= true> static inline void update(np t) {
  if constexpr (sz) t->sz= 1;
  if constexpr (semigroup_v<M>) {
   t->sum= t->val;
   if constexpr (reversible && !commute_v<M>) t->rsum= t->sum;
  }
  if (t->ch[0]) {
   if constexpr (sz) t->sz+= t->ch[0]->size();
   if constexpr (semigroup_v<M>) {
    t->sum= M::op(t->ch[0]->sum, t->sum);
    if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->rsum, t->ch[0]->rsum);
   }
  }
  if (t->ch[1]) {
   if constexpr (sz) t->sz+= t->ch[1]->size();
   if constexpr (semigroup_v<M>) {
    t->sum= M::op(t->sum, t->ch[1]->sum);
    if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->ch[1]->rsum, t->rsum);
   }
  }
 }
 static inline void map(T &v, E x, int sz) {
  if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) M::mp(v, x, sz);
  else M::mp(v, x);
 }
 static inline void propagate(np t, const E &x) {
  if (!t) return;
  if (t->sz >> 31) M::cp(t->laz, x);
  else t->laz= x;
  if constexpr (semigroup_v<M>) {
   map(t->sum, x, t->size());
   if constexpr (reversible && !commute_v<M>) map(t->rsum, x, t->size());
  }
  map(t->val, x, 1), t->sz|= 0x80000000;
 }
 static inline void toggle(np t) {
  if (!t) return;
  if constexpr (semigroup_v<M> && !commute_v<M>) std::swap(t->sum, t->rsum);
  std::swap(t->ch[0], t->ch[1]), t->sz^= 0x40000000;
 }
 static inline void push_prop(np t) {
  if (t->sz >> 31) propagate(t->ch[0], t->laz), propagate(t->ch[1], t->laz), t->sz^= 0x80000000;
 }
 static inline void push_tog(np t) {
  if (t->sz & 0x40000000) toggle(t->ch[0]), toggle(t->ch[1]), t->sz^= 0x40000000;
 }
 static inline void rot(np t) {
  np p= t->par;
  if (bool d= p->ch[1] == t; (p->ch[d]= std::exchange(t->ch[!d], p))) p->ch[d]->par= p;
  if ((t->par= std::exchange(p->par, t))) t->par->ch[t->par->ch[1] == p]= t;
  update(p);
 }
 static inline void splay(np &t, size_t k) {
  for (assert(t), assert(k < t->size());;) {
   size_t sz= t->ch[0] ? t->ch[0]->size() : 0;
   if constexpr (dual_v<M>) push_prop(t);
   if constexpr (reversible) push_tog(t);
   if (sz == k) break;
   if (sz < k) k-= sz + 1, t= t->ch[1];
   else t= t->ch[0];
  }
  for (np p; (p= t->par); rot(t))
   if (p->par) rot(p->par->ch[p->ch[1] == t] == p ? p : t);
  update(t);
 }
 inline np between(size_t a, size_t b) { return a ? b == rt->size() ? (splay(rt, a - 1), rt->ch[1]) : (splay(rt, b), rt->ch[0]->par= nullptr, splay(rt->ch[0], a - 1), rt->ch[0]->par= rt, rt->ch[0]->ch[1]) : b == rt->size() ? rt : (splay(rt, b), rt->ch[0]); }
 static inline SplayTree np_to(np t) {
  SplayTree ret;
  return ret.rt= t, ret;
 }
public:
 SplayTree(): rt(nullptr) {}
 SplayTree(size_t n, const T &val= T()): rt(n ? build(0, n, nullptr, val) : nullptr) {}
 SplayTree(const T *bg, const T *ed): rt(bg == ed ? nullptr : build(0, ed - bg, nullptr, bg)) {}
 SplayTree(const std::vector<T> &v): SplayTree(v.data(), v.data() + v.size()) {}
 size_t size() const { return rt ? rt->size() : 0; }
 void clear() { rt= nullptr; }
 std::vector<T> dump() {
  if (!rt) return std::vector<T>();
  std::vector<T> ret(size());
  return dump(ret.begin(), rt), ret;
 }
 static std::string which_unavailable() {
  std::string ret= "";
  if constexpr (semigroup_v<M>) ret+= "\"at\" ";
  else ret+= "\"prod\" ";
  if constexpr (!semigroup_v<M> || !commute_v<M>) ret+= "\"mul\" ";
  if constexpr (!dual_v<M>) ret+= "\"apply\" ";
  if constexpr (!reversible) ret+= "\"reverse\" ";
  return ret;
 }
 template <class L= M> const std::enable_if_t<semigroup_v<L>, T> &operator[](size_t k) { return get(k); }
 template <class L= M> std::enable_if_t<!semigroup_v<L>, T> &operator[](size_t k) { return at(k); }
 const T &get(size_t k) { return splay(rt, k), rt->val; }
 T &at(size_t k) {
  static_assert(!semigroup_v<M>, "\"at\" is not available");
  return splay(rt, k), rt->val;
 }
 void set(size_t k, const T &val) {
  splay(rt, k), rt->val= val;
  if constexpr (semigroup_v<M>) update<0>(rt);
 }
 void mul(size_t k, const T &val) {
  static_assert(semigroup_v<M> && commute_v<M>, "\"mul\" is not available");
  splay(rt, k), rt->val= M::op(rt->val, val), update<0>(rt);
 }
 const T &prod(size_t a, size_t b) {
  static_assert(semigroup_v<M>, "\"prod\" is not available");
  return between(a, b)->sum;
 }
 void apply(size_t a, size_t b, const E &x) {
  static_assert(dual_v<M>, "\"apply\" is not available");
  np t= between(a, b);
  propagate(t, x);
  if constexpr (semigroup_v<M>)
   if (np p= t->par; p)
    if (update<0>(p); p->par) update<0>(p->par);
 }
 void reverse() {
  static_assert(reversible, "\"reverse\" is not available");
  if (rt) toggle(rt);
 }
 void reverse(size_t a, size_t b) {
  static_assert(reversible, "\"reverse\" is not available");
  toggle(between(a, b));
 }
 std::pair<SplayTree, SplayTree> split(size_t k) {
  if (!k) return {SplayTree(), *this};
  if (size() == k) return {*this, SplayTree()};
  splay(rt, k);
  np l= rt->ch[0];
  rt->ch[0]= l->par= nullptr, update(rt);
  return {np_to(l), np_to(rt)};
 }
 std::tuple<SplayTree, SplayTree, SplayTree> split3(size_t a, size_t b) {
  auto [tmp, right]= split(b);
  auto [left, center]= tmp.split(a);
  return {left, center, right};
 }
 SplayTree &operator+=(SplayTree rhs) {
  if (!rt) rt= rhs.rt;
  else if (rhs.rt) splay(rhs.rt, 0), rhs.rt->ch[0]= rt, rt->par= rhs.rt, rt= rhs.rt, update(rt);
  return *this;
 }
 SplayTree operator+(SplayTree rhs) { return SplayTree(*this)+= rhs; }
 void push_back(const T &val) {
  if (rt) {
   np t= new Node;
   t->ch[0]= rt, rt->par= t, rt= t;
  } else rt= new Node;
  rt->val= val, update(rt);
 }
 void push_front(const T &val) {
  if (rt) {
   np t= new Node;
   t->ch[1]= rt, rt->par= t, rt= t;
  } else rt= new Node;
  rt->val= val, update(rt);
 }
 void insert(size_t k, const T &val) {
  assert(k <= size());
  if (!k) return push_front(val);
  if (k == rt->size()) return push_back(val);
  splay(rt, k);
  np l= std::exchange(rt->ch[0], nullptr);
  update(rt);
  np t= new Node;
  t->ch[0]= l, t->ch[1]= rt, l->par= rt->par= t, t->val= val, rt= t, update(rt);
 }
 T pop_back() {
  splay(rt, rt->size() - 1);
  T v= std::exchange(rt, rt->ch[0])->val;
  if (rt) rt->par= nullptr;
  return v;
 }
 T pop_front() {
  splay(rt, 0);
  T v= std::exchange(rt, rt->ch[1])->val;
  if (rt) rt->par= nullptr;
  return v;
 }
 T erase(size_t k) {
  if (!k) return pop_front();
  if (k == rt->size() - 1) return pop_back();
  splay(rt, k);
  np l= rt->ch[0];
  T v= std::exchange(rt, rt->ch[1])->val;
  return rt->par= nullptr, splay(rt, 0), l->par= rt, rt->ch[0]= l, update(rt), v;
 }
};
#line 10 "test/yosupo/range_affine_point_get.Splay.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct M {
 using T= Mint;
 using E= array<Mint, 2>;
 static void mp(T &v, E x) { v= x[0] * v + x[1]; }
 static void cp(E &x, E y) { x= {y[0] * x[0], y[0] * x[1] + y[1]}; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(false);
 int N, Q;
 cin >> N >> Q;
 vector<Mint> a(N);
 for (int i= 0; i < N; i++) cin >> a[i];
 SplayTree<M> splay(a);
 while (Q--) {
  int t;
  cin >> t;
  if (t) {
   int i;
   cin >> i;
   cout << splay[i] << '\n';
  } else {
   int l, r;
   Mint b, c;
   cin >> l >> r >> b >> c;
   splay.apply(l, r, {b, c});
  }
 }
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 example_00 :heavy_check_mark: AC 6 ms 4 MB
g++-13 max_random_00 :heavy_check_mark: AC 889 ms 37 MB
g++-13 max_random_01 :heavy_check_mark: AC 865 ms 37 MB
g++-13 max_random_02 :heavy_check_mark: AC 881 ms 37 MB
g++-13 random_00 :heavy_check_mark: AC 680 ms 29 MB
g++-13 random_01 :heavy_check_mark: AC 716 ms 34 MB
g++-13 random_02 :heavy_check_mark: AC 402 ms 7 MB
g++-13 small_00 :heavy_check_mark: AC 6 ms 4 MB
g++-13 small_01 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_02 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_03 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_04 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_05 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_06 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_07 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_08 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_09 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_random_00 :heavy_check_mark: AC 5 ms 4 MB
g++-13 small_random_01 :heavy_check_mark: AC 5 ms 3 MB
clang++-18 example_00 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 max_random_00 :heavy_check_mark: AC 977 ms 37 MB
clang++-18 max_random_01 :heavy_check_mark: AC 987 ms 37 MB
clang++-18 max_random_02 :x: TLE 1005 ms 0 MB
clang++-18 random_00 :heavy_check_mark: AC 737 ms 29 MB
clang++-18 random_01 :heavy_check_mark: AC 797 ms 34 MB
clang++-18 random_02 :heavy_check_mark: AC 452 ms 7 MB
clang++-18 small_00 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 small_01 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_02 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_03 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_04 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_05 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_06 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_07 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_08 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_09 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 small_random_00 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 small_random_01 :heavy_check_mark: AC 5 ms 4 MB
Back to top page