This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <utility>
#include "src/DataStructure/SegmentTree.hpp"
#include "src/Math/ModInt.hpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RcompositeQ {
using T= pair<Mint, Mint>;
static T ti() { return make_pair(Mint(1), Mint(0)); }
static T op(const T &l, const T &r) { return make_pair(r.first * l.first, r.first * l.second + r.second); }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
vector<RcompositeQ::T> v(N);
for (int i= 0; i < N; i++) {
Mint a, b;
cin >> a >> b;
v[i]= {a, b};
}
SegmentTree<RcompositeQ> seg(v);
while (Q--) {
bool op;
cin >> op;
if (op) {
int l, r;
Mint x;
cin >> l >> r >> x;
auto ans= seg.prod(l, r);
cout << ans.first * x + ans.second << '\n';
} else {
int p;
Mint c, d;
cin >> p >> c >> d;
seg.set(p, {c, d});
}
}
return 0;
}
#line 1 "test/yosupo/point_set_range_composite.SegTree.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/point_set_range_composite
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include <utility>
#line 2 "src/DataStructure/SegmentTree.hpp"
#include <memory>
#include <cassert>
#line 5 "src/DataStructure/SegmentTree.hpp"
#include <algorithm>
#line 2 "src/Internal/detection_idiom.hpp"
#include <type_traits>
#define _DETECT_BOOL(name, ...) \
template <class, class= void> struct name: std::false_type {}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
template <class T, class= void> struct name { \
using type= type2; \
}; \
template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
using type= type1; \
}
#line 7 "src/DataStructure/SegmentTree.hpp"
template <class M> class SegmentTree {
_DETECT_BOOL(monoid, typename T::T, decltype(&T::op), decltype(&T::ti));
_DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
_DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
using T= typename M::T;
using E= typename nullptr_or_E<M>::type;
int n;
std::unique_ptr<T[]> dat;
std::unique_ptr<E[]> laz;
std::unique_ptr<bool[]> flg;
inline void update(int k) { dat[k]= M::op(dat[k << 1], dat[k << 1 | 1]); }
inline bool map(int k, E x, int sz) {
if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz);
else if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E>) return M::mp(dat[k], x);
else if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz), true;
else return M::mp(dat[k], x), true;
}
inline void prop(int k, E x, int sz) {
if (k < n) {
if (flg[k]) M::cp(laz[k], x);
else laz[k]= x;
flg[k]= true;
if constexpr (monoid_v<M>)
if (!map(k, x, sz)) push(k, sz), update(k);
} else {
if constexpr (monoid_v<M>) map(k, x, 1);
else map(k - n, x, 1);
}
}
inline void push(int k, int sz) {
if (flg[k]) prop(k << 1, laz[k], sz >> 1), prop(k << 1 | 1, laz[k], sz >> 1), flg[k]= false;
}
inline bool valid(int k) const {
int d= __builtin_clz(k) - __builtin_clz(n);
return (n >> d) != k || ((n >> d) << d) == n;
}
public:
SegmentTree() {}
SegmentTree(int n): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
if constexpr (monoid_v<M>) std::fill_n(dat.get(), n << 1, M::ti());
if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
}
template <class F> SegmentTree(int n, const F &init): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
auto a= dat.get() + (n & -monoid_v<M>);
for (int i= 0; i < n; ++i) a[i]= init(i);
if constexpr (monoid_v<M>) build();
if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
}
SegmentTree(int n, T x): SegmentTree(n, [x](int) { return x; }) {}
SegmentTree(const std::vector<T> &v): SegmentTree(v.size(), [&v](int i) { return v[i]; }) {}
SegmentTree(const T *bg, const T *ed): SegmentTree(ed - bg, [bg](int i) { return bg[i]; }) {}
void build() {
static_assert(monoid_v<M>, "\"build\" is not available\n");
for (int i= n; --i;) update(i);
}
inline void unsafe_set(int i, T x) {
static_assert(monoid_v<M>, "\"unsafe_set\" is not available\n");
dat[i + n]= x;
}
inline void set(int i, T x) {
get(i);
if constexpr (monoid_v<M>)
for (dat[i+= n]= x; i>>= 1;) update(i);
else dat[i]= x;
}
inline void mul(int i, T x) {
static_assert(monoid_v<M>, "\"mul\" is not available\n");
set(i, M::op(get(i), x));
}
inline T get(int i) {
i+= n;
if constexpr (dual_v<M>)
for (int j= 31 - __builtin_clz(i); j; --j) push(i >> j, 1 << j);
if constexpr (monoid_v<M>) return dat[i];
else return dat[i - n];
}
inline T operator[](int i) { return get(i); }
inline T prod(int l, int r) {
static_assert(monoid_v<M>, "\"prod\" is not available\n");
l+= n, r+= n;
if constexpr (dual_v<M>) {
for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; --j) push(l >> j, 1 << j);
for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; --j) push(r >> j, 1 << j);
}
T s1= M::ti(), s2= M::ti();
for (; l < r; l>>= 1, r>>= 1) {
if (l & 1) s1= M::op(s1, dat[l++]);
if (r & 1) s2= M::op(dat[--r], s2);
}
return M::op(s1, s2);
}
inline void apply(int l, int r, E x) {
static_assert(dual_v<M>, "\"apply\" is not available\n");
l+= n, r+= n;
for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; j--) push(l >> j, 1 << j);
for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; j--) push(r >> j, 1 << j);
for (int a= l, b= r, sz= 1; a < b; a>>= 1, b>>= 1, sz<<= 1) {
if (a & 1) prop(a++, x, sz);
if (b & 1) prop(--b, x, sz);
}
if constexpr (monoid_v<M>) {
for (int j= __builtin_ctz(l) + 1; l >> j; ++j) update(l >> j);
for (int j= __builtin_ctz(r) + 1; r >> j; ++j) update(r >> j);
}
}
template <class C> int max_right(int l, const C &check) {
static_assert(monoid_v<M>, "\"max_right\" is not available\n");
assert(check(M::ti()));
if (check(prod(l, n))) return n;
T s= M::ti(), t;
int sz= 1;
for (get(l), l+= n;; s= t, ++l) {
while (!(l & 1) && valid(l >> 1)) l>>= 1, sz<<= 1;
if (!check(t= M::op(s, dat[l]))) {
while (l < n) {
if constexpr (dual_v<M>) push(l, sz);
l<<= 1, sz>>= 1;
if (check(t= M::op(s, dat[l]))) s= t, ++l;
}
return l - n;
}
}
}
template <class C> int min_left(int r, const C &check) {
static_assert(monoid_v<M>, "\"min_left\" is not available\n");
assert(check(M::ti()));
if (check(prod(0, r))) return 0;
T s= M::ti(), t;
int sz= 1;
for (get(--r), r+= n;; s= t, --r) {
while (!valid(r)) r= r << 1 | 1, sz>>= 1;
while ((r & 1) && valid(r >> 1)) r>>= 1, sz<<= 1;
if (!check(t= M::op(dat[r], s))) {
while (r < n) {
if constexpr (dual_v<M>) push(r, sz);
r= r << 1 | 1, sz>>= 1;
if (check(t= M::op(dat[r], s))) s= t, --r;
}
return r + 1 - n;
}
}
}
};
#line 5 "src/Math/mod_inv.hpp"
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 9 "test/yosupo/point_set_range_composite.SegTree.test.cpp"
using namespace std;
using Mint= ModInt<998244353>;
struct RcompositeQ {
using T= pair<Mint, Mint>;
static T ti() { return make_pair(Mint(1), Mint(0)); }
static T op(const T &l, const T &r) { return make_pair(r.first * l.first, r.first * l.second + r.second); }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
vector<RcompositeQ::T> v(N);
for (int i= 0; i < N; i++) {
Mint a, b;
cin >> a >> b;
v[i]= {a, b};
}
SegmentTree<RcompositeQ> seg(v);
while (Q--) {
bool op;
cin >> op;
if (op) {
int l, r;
Mint x;
cin >> l >> r >> x;
auto ans= seg.prod(l, r);
cout << ans.first * x + ans.second << '\n';
} else {
int p;
Mint c, d;
cin >> p >> c >> d;
seg.set(p, {c, d});
}
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | example_00 |
![]() |
6 ms | 4 MB |
g++-13 | max_random_00 |
![]() |
279 ms | 15 MB |
g++-13 | max_random_01 |
![]() |
305 ms | 15 MB |
g++-13 | max_random_02 |
![]() |
292 ms | 15 MB |
g++-13 | max_random_03 |
![]() |
290 ms | 15 MB |
g++-13 | max_random_04 |
![]() |
284 ms | 15 MB |
g++-13 | random_00 |
![]() |
231 ms | 12 MB |
g++-13 | random_01 |
![]() |
237 ms | 14 MB |
g++-13 | random_02 |
![]() |
159 ms | 5 MB |
g++-13 | random_03 |
![]() |
71 ms | 13 MB |
g++-13 | random_04 |
![]() |
82 ms | 10 MB |
g++-13 | small_00 |
![]() |
5 ms | 4 MB |
g++-13 | small_01 |
![]() |
5 ms | 4 MB |
g++-13 | small_02 |
![]() |
5 ms | 4 MB |
g++-13 | small_03 |
![]() |
5 ms | 4 MB |
g++-13 | small_04 |
![]() |
5 ms | 4 MB |
clang++-18 | example_00 |
![]() |
5 ms | 4 MB |
clang++-18 | max_random_00 |
![]() |
272 ms | 15 MB |
clang++-18 | max_random_01 |
![]() |
275 ms | 15 MB |
clang++-18 | max_random_02 |
![]() |
280 ms | 15 MB |
clang++-18 | max_random_03 |
![]() |
278 ms | 15 MB |
clang++-18 | max_random_04 |
![]() |
283 ms | 15 MB |
clang++-18 | random_00 |
![]() |
227 ms | 13 MB |
clang++-18 | random_01 |
![]() |
233 ms | 14 MB |
clang++-18 | random_02 |
![]() |
160 ms | 5 MB |
clang++-18 | random_03 |
![]() |
70 ms | 13 MB |
clang++-18 | random_04 |
![]() |
81 ms | 10 MB |
clang++-18 | small_00 |
![]() |
5 ms | 4 MB |
clang++-18 | small_01 |
![]() |
5 ms | 4 MB |
clang++-18 | small_02 |
![]() |
5 ms | 4 MB |
clang++-18 | small_03 |
![]() |
5 ms | 4 MB |
clang++-18 | small_04 |
![]() |
5 ms | 4 MB |