This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/convolution_mod_large
// competitive-verifier: TLE 10
// competitive-verifier: MLE 2048
#include <iostream>
#include <vector>
#include "src/Math/ModInt.hpp"
#include "src/FFT/convolve.hpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
int N, M;
cin >> N >> M;
vector<Mint> a(N), b(M);
for (int i= 0; i < N; i++) cin >> a[i];
for (int j= 0; j < M; j++) cin >> b[j];
auto c= convolve<Mint, (1 << 25)>(a, b);
c.resize(N + M - 1);
for (int k= 0; k < N + M - 1; k++) {
cout << c[k] << " \n"[k == N + M - 2];
}
return 0;
}
#line 1 "test/yosupo/convolution_large.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/convolution_mod_large
// competitive-verifier: TLE 10
// competitive-verifier: MLE 2048
#include <iostream>
#include <vector>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 3 "src/FFT/convolve.hpp"
#include <cmath>
#line 2 "src/FFT/NTT.hpp"
#include <array>
#include <limits>
#line 3 "src/NumberTheory/is_prime.hpp"
namespace math_internal {
template <class Uint, class MP, u32... args> constexpr bool miller_rabin(Uint n) {
const MP md(n);
const Uint s= __builtin_ctzll(n - 1), d= n >> s, one= md.set(1), n1= md.norm(md.set(n - 1));
for (u32 a: (u32[]){args...})
if (Uint b= a % n; b)
if (Uint p= md.norm(pow(md.set(b), d, md)); p != one)
for (int i= s; p != n1; p= md.norm(md.mul(p, p)))
if (!(--i)) return 0;
return 1;
}
}
constexpr bool is_prime(unsigned long long n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
if (n < (1 << 30)) return math_internal::miller_rabin<unsigned, math_internal::MP_Mo32, 2, 7, 61>(n);
if (n < (1ull << 62)) return math_internal::miller_rabin<unsigned long long, math_internal::MP_Mo64, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
if (n < (1ull << 63)) return math_internal::miller_rabin<unsigned long long, math_internal::MP_D2B1_1, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
return math_internal::miller_rabin<unsigned long long, math_internal::MP_D2B1_2, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
}
#line 6 "src/FFT/NTT.hpp"
template <class mod_t, size_t LM> mod_t get_inv(int n) {
static_assert(is_modint_v<mod_t>);
static const auto m= mod_t::mod();
static mod_t* dat= new mod_t[LM];
static int l= 1;
if (l == 1) dat[l++]= 1;
for (; l <= n; ++l) dat[l]= dat[m % l] * (m - m / l);
return dat[n];
}
namespace math_internal {
#define CE constexpr
#define ST static
#define TP template
#define BSF(_, n) __builtin_ctz##_(n)
TP<class mod_t> struct NTT {
#define _DFT(a, b, c, ...) \
mod_t r, u, *x0, *x1; \
for (int a= n, b= 1, s, i; a>>= 1; b<<= 1) \
for (s= 0, r= I, x0= x;; r*= c[BSF(, s)], x0= x1 + p) { \
for (x1= x0 + (i= p); i--;) __VA_ARGS__; \
if (++s == e) break; \
}
ST inline void dft(int n, mod_t x[]) { _DFT(p, e, r2, x1[i]= x0[i] - (u= r * x1[i]), x0[i]+= u); }
ST inline void idft(int n, mod_t x[]) {
_DFT(e, p, ir2, u= x0[i] - x1[i], x0[i]+= x1[i], x1[i]= r * u)
for (const mod_t iv= I / n; n--;) x[n]*= iv;
}
#undef _DFT
ST inline void even_dft(int n, mod_t x[]) {
for (int i= 0, j= 0; i < n; i+= 2) x[j++]= iv2 * (x[i] + x[i + 1]);
}
ST inline void odd_dft(int n, mod_t x[], mod_t r= iv2) {
for (int i= 0, j= 0;; r*= ir2[BSF(, ++j)])
if (x[j]= r * (x[i] - x[i + 1]); (i+= 2) == n) break;
}
ST inline void dft_doubling(int n, mod_t x[], int i= 0) {
mod_t k= I, t= rt[BSF(, n << 1)];
for (copy_n(x, n, x + n), idft(n, x + n); i < n; ++i) x[n + i]*= k, k*= t;
dft(n, x + n);
}
protected:
ST CE u64 md= mod_t::mod();
static_assert(md & 1);
static_assert(is_prime(md));
ST CE u8 E= BSF(ll, md - 1);
ST CE mod_t w= [](u8 e) {
for (mod_t r= 2;; r+= 1)
if (auto s= r.pow((md - 1) / 2); s != 1 && s * s == 1) return r.pow((md - 1) >> e);
return mod_t();
}(E);
static_assert(w != mod_t());
ST CE mod_t I= 1, iv2= (md + 1) / 2, iw= w.pow((1ULL << E) - 1);
ST CE auto roots(mod_t w) {
array<mod_t, E + 1> x= {};
for (u8 e= E; e; w*= w) x[e--]= w;
return x[0]= w, x;
}
TP<u32 N> ST CE auto ras(const array<mod_t, E + 1>& rt, const array<mod_t, E + 1>& irt, int i= N) {
array<mod_t, E + 1 - N> x= {};
for (mod_t ro= 1; i <= E; ro*= irt[i++]) x[i - N]= rt[i] * ro;
return x;
}
ST CE auto rt= roots(w), irt= roots(iw);
ST CE auto r2= ras<2>(rt, irt), ir2= ras<2>(irt, rt);
};
TP<class T, u8 t, class B> struct NI: public B {
using B::B;
#define FUNC(op, name, HG, ...) \
inline void name(__VA_ARGS__) { \
HG(op, 1); \
if CE (t > 1) HG(op, 2); \
if CE (t > 2) HG(op, 3); \
if CE (t > 3) HG(op, 4); \
if CE (t > 4) HG(op, 5); \
}
#define REP for (int i= b; i < e; ++i)
#define DFT(fft, _) B::ntt##_::fft(e - b, this->dt##_ + b)
#define ZEROS(op, _) fill_n(this->dt##_ + b, e - b, typename B::m##_())
#define SET(op, _) copy(x + b, x + e, this->dt##_ + b)
#define SET_S(op, _) this->dt##_[i]= x;
#define SUBST(op, _) copy(r.dt##_ + b, r.dt##_ + e, this->dt##_ + b)
#define ASGN(op, _) REP this->dt##_[i] op##= r.dt##_[i]
#define ASN(nm, op) TP<class C> FUNC(op, nm, ASGN, const NI<T, t, C>& r, int b, int e)
#define BOP(op, _) REP this->dt##_[i]= l.dt##_[i] op r.dt##_[i]
#define OP(nm, op) TP<class C, class D> FUNC(op, nm, BOP, const NI<T, t, C>& l, const NI<T, t, D>& r, int b, int e)
OP(add, +) OP(dif, -) OP(mul, *) ASN(add, +) ASN(dif, -) ASN(mul, *) FUNC(dft, dft, DFT, int b, int e) FUNC(idft, idft, DFT, int b, int e) FUNC(__, zeros, ZEROS, int b, int e) FUNC(__, set, SET, const T x[], int b, int e) FUNC(__, set, SET_S, int i, T x) TP<class C> FUNC(__, subst, SUBST, const NI<T, t, C>& r, int b, int e) inline void get(T x[], int b, int e) const {
if CE (t == 1) copy(this->dt1 + b, this->dt1 + e, x + b);
else REP x[i]= get(i);
}
#define TMP(_) B::iv##_##1 * (this->dt##_[i] - r1)
inline T get(int i) const {
if CE (t > 1) {
u64 r1= this->dt1[i].val(), r2= (TMP(2)).val();
T a= 0;
if CE (t > 2) {
u64 r3= (TMP(3) - B::iv32 * r2).val();
if CE (t > 3) {
u64 r4= (TMP(4) - B::iv42 * r2 - B::iv43 * r3).val();
if CE (t > 4) a= T(B::m4::mod()) * (TMP(5) - B::iv52 * r2 - B::iv53 * r3 - B::iv54 * r4).val();
a= (a + r4) * B::m3::mod();
}
a= (a + r3) * B::m2::mod();
}
return (a + r2) * B::m1::mod() + r1;
} else return this->dt1[i];
}
#undef TMP
#undef DFT
#undef ZEROS
#undef SET
#undef SET_S
#undef SUBST
#undef ASGN
#undef ASN
#undef BOP
#undef OP
#undef FUNC
#undef REP
};
#define ARR(_) \
using m##_= ModInt<M##_>; \
using ntt##_= NTT<m##_>; \
m##_* dt##_= new m##_[LM];
#define IV2 ST CE m2 iv21= m2(1) / m1::mod();
#define IV3 ST CE m3 iv32= m3(1) / m2::mod(), iv31= iv32 / m1::mod();
#define IV4 ST CE m4 iv43= m4(1) / m3::mod(), iv42= iv43 / m2::mod(), iv41= iv42 / m1::mod();
#define IV5 ST CE m5 iv54= m5(1) / m4::mod(), iv53= iv54 / m3::mod(), iv52= iv53 / m2::mod(), iv51= iv52 / m1::mod();
TP<u8 t, u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM, bool v> struct NB {
ARR(1)
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<2, M1, M2, M3, M4, M5, LM, 0> {
ARR(1) ARR(2) IV2
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<3, M1, M2, M3, M4, M5, LM, 0> {
ARR(1) ARR(2) ARR(3) IV2 IV3
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<4, M1, M2, M3, M4, M5, LM, 0> {
ARR(1) ARR(2) ARR(3) ARR(4) IV2 IV3 IV4
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<5, M1, M2, M3, M4, M5, LM, 0> {
ARR(1) ARR(2) ARR(3) ARR(4) ARR(5) IV2 IV3 IV4 IV5
};
#undef ARR
#define VC(_) \
using m##_= ModInt<M##_>; \
using ntt##_= NTT<m##_>; \
vector<m##_> bf##_; \
m##_* dt##_;
#define RS resize
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<1, M1, M2, M3, M4, M5, LM, 1> {
NB(): dt1(bf1.data()) {}
void RS(int n) { bf1.RS(n), dt1= bf1.data(); }
u32 size() const { return bf1.size(); }
VC(1)
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<2, M1, M2, M3, M4, M5, LM, 1> {
NB(): dt1(bf1.data()), dt2(bf2.data()) {}
void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(); }
u32 size() const { return bf1.size(); }
VC(1) VC(2) IV2
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<3, M1, M2, M3, M4, M5, LM, 1> {
NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()) {}
void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(); }
u32 size() const { return bf1.size(); }
VC(1) VC(2) VC(3) IV2 IV3
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<4, M1, M2, M3, M4, M5, LM, 1> {
NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()), dt4(bf4.data()) {}
void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(), bf4.RS(n), dt4= bf4.data(); }
u32 size() const { return bf1.size(); }
VC(1) VC(2) VC(3) VC(4) IV2 IV3 IV4
};
TP<u64 M1, u32 M2, u32 M3, u32 M4, u32 M5, u32 LM> struct NB<5, M1, M2, M3, M4, M5, LM, 1> {
NB(): dt1(bf1.data()), dt2(bf2.data()), dt3(bf3.data()), dt4(bf4.data()), dt5(bf5.data()) {}
void RS(int n) { bf1.RS(n), dt1= bf1.data(), bf2.RS(n), dt2= bf2.data(), bf3.RS(n), dt3= bf3.data(), bf4.RS(n), dt4= bf4.data(), bf5.RS(n), dt5= bf5.data(); }
u32 size() const { return bf1.size(); }
VC(1) VC(2) VC(3) VC(4) VC(5) IV2 IV3 IV4 IV5
};
#undef VC
#undef IV2
#undef IV3
#undef IV4
#undef IV5
TP<class T, u32 LM> CE bool is_nttfriend() {
if CE (!is_staticmodint_v<T>) return 0;
else return (T::mod() & is_prime(T::mod())) && LM <= (1ULL << BSF(ll, T::mod() - 1));
}
TP<class T, enable_if_t<is_arithmetic_v<T>, nullptr_t> = nullptr> CE u64 mv() { return numeric_limits<T>::max(); }
TP<class T, enable_if_t<is_staticmodint_v<T>, nullptr_t> = nullptr> CE u64 mv() { return T::mod(); }
TP<class T, u32 LM, u32 M1, u32 M2, u32 M3, u32 M4> CE u8 nt() {
if CE (!is_nttfriend<T, LM>()) {
CE u128 m= mv<T>(), mm= m * m;
if CE (mm <= M1 / LM) return 1;
else if CE (mm <= u64(M1) * M2 / LM) return 2;
else if CE (mm <= u128(M1) * M2 * M3 / LM) return 3;
else if CE (mm <= u128(M1) * M2 * M3 * M4 / LM) return 4;
else return 5;
} else return 1;
}
#undef BSF
#undef RS
CE u32 MOD1= 998244353, MOD2= 897581057, MOD3= 880803841, MOD4= 754974721, MOD5= 645922817;
TP<class T, u32 LM> CE u8 nttarr_type= nt<T, LM, MOD1, MOD2, MOD3, MOD4>();
TP<class T, u32 LM> CE u8 nttarr_cat= is_nttfriend<T, LM>() && (mv<T>() > (1 << 30)) ? 0 : nttarr_type<T, LM>;
TP<class T, u32 LM, bool v> using NTTArray= NI<T, nttarr_type<T, LM>, conditional_t<is_nttfriend<T, LM>(), NB<1, mv<T>(), 0, 0, 0, 0, LM, v>, NB<nttarr_type<T, LM>, MOD1, MOD2, MOD3, MOD4, MOD5, LM, v>>>;
#undef CE
#undef ST
#undef TP
}
using math_internal::is_nttfriend, math_internal::nttarr_type, math_internal::nttarr_cat, math_internal::NTT, math_internal::NTTArray;
template <class T, size_t LM, int id= 0> struct GlobalNTTArray {
static inline NTTArray<T, LM, 0> bf;
};
template <class T, size_t LM, size_t LM2, int id= 0> struct GlobalNTTArray2D {
static inline NTTArray<T, LM, 0>* bf= new NTTArray<T, LM, 0>[LM2];
};
template <class T, size_t LM, int id= 0> struct GlobalArray {
static inline T* bf= new T[LM];
};
constexpr unsigned pw2(unsigned n) { return --n, n|= n >> 1, n|= n >> 2, n|= n >> 4, n|= n >> 8, n|= n >> 16, ++n; }
#line 5 "src/FFT/convolve.hpp"
template <class mod_t, size_t LM= 1 << 22> std::vector<mod_t> convolve(const std::vector<mod_t>& p, const std::vector<mod_t>& q) {
mod_t *pp= GlobalArray<mod_t, LM, 0>::bf, *qq= GlobalArray<mod_t, LM, 1>::bf, *rr= GlobalArray<mod_t, LM, 2>::bf;
static constexpr int t= nttarr_cat<mod_t, LM>, TH= (int[]){70, 30, 70, 100, 135, 150}[t];
auto f= [](int l) -> int {
static constexpr double B[]= {(double[]){8.288, 5.418, 7.070, 9.676, 11.713, 13.374}[t], (double[]){8.252, 6.578, 9.283, 12.810, 13.853, 15.501}[t]};
return std::round(std::pow(l, 0.535) * B[__builtin_ctz(l) & 1]);
};
const int n= p.size(), m= q.size(), sz= n + m - 1;
if (!n || !m) return std::vector<mod_t>();
if (std::min(n, m) < TH) {
std::fill_n(rr, sz, mod_t()), std::copy(p.begin(), p.end(), pp), std::copy(q.begin(), q.end(), qq);
for (int i= n; i--;)
for (int j= m; j--;) rr[i + j]+= pp[i] * qq[j];
} else {
const int rl= pw2(sz), l= pw2(std::max(n, m)), fl= f(l);
static constexpr size_t LM2= LM >> 3;
static constexpr bool b= nttarr_cat<mod_t, LM2> < t;
if (b || (l + fl < sz && sz <= (rl >> 3) * 5)) {
using GNA1= GlobalNTTArray<mod_t, LM2, 1>;
using GNA2= GlobalNTTArray<mod_t, LM2, 2>;
auto gt1= GlobalNTTArray2D<mod_t, LM2, 16, 1>::bf, gt2= GlobalNTTArray2D<mod_t, LM2, 16, 2>::bf;
const int l= rl >> 4, l2= l << 1, nn= (n + l - 1) / l, mm= (m + l - 1) / l, ss= nn + mm - 1;
for (int i= 0, k= 0, s; k < n; ++i, k+= l) gt1[i].set(p.data() + k, 0, s= std::min(l, n - k)), gt1[i].zeros(s, l2), gt1[i].dft(0, l2);
if (&p != &q)
for (int i= 0, k= 0, s; k < m; ++i, k+= l) gt2[i].set(q.data() + k, 0, s= std::min(l, m - k)), gt2[i].zeros(s, l2), gt2[i].dft(0, l2);
else
for (int i= nn; i--;) gt2[i].subst(gt1[i], 0, l2);
GNA2::bf.mul(gt1[0], gt2[0], 0, l2), GNA2::bf.idft(0, l2), GNA2::bf.get(rr, 0, l2);
for (int i= 1, k= l, j, ed; i < ss; ++i, k+= l) {
for (j= std::max(0, i - nn + 1), ed= std::min(mm - 1, i), GNA2::bf.mul(gt1[i - ed], gt2[ed], 0, l2); j < ed; ++j) GNA1::bf.mul(gt1[i - j], gt2[j], 0, l2), GNA2::bf.add(GNA1::bf, 0, l2);
for (GNA2::bf.idft(0, l2), GNA2::bf.get(pp, 0, j= std::min(l, sz - k)); j--;) rr[k + j]+= pp[j];
if (l < sz - k) GNA2::bf.get(rr + k, l, std::min(l2, sz - k));
}
} else {
using GNA1= GlobalNTTArray<mod_t, LM, 1>;
using GNA2= GlobalNTTArray<mod_t, LM, 2>;
const int len= sz <= l + fl ? l : rl;
if (GNA1::bf.set(p.data(), 0, n), GNA1::bf.zeros(n, len), GNA1::bf.dft(0, len); &p != &q) GNA2::bf.set(q.data(), 0, m), GNA2::bf.zeros(m, len), GNA2::bf.dft(0, len), GNA1::bf.mul(GNA2::bf, 0, len);
else GNA1::bf.mul(GNA1::bf, 0, len);
if (GNA1::bf.idft(0, len), GNA1::bf.get(rr, 0, std::min(sz, len)); len < sz) {
std::copy(p.begin() + len - m + 1, p.end(), pp + len - m + 1), std::copy(q.begin() + len - n + 1, q.end(), qq + len - n + 1);
for (int i= len, j; i < sz; rr[i - len]-= rr[i], ++i)
for (rr[i]= mod_t(), j= i - m + 1; j < n; ++j) rr[i]+= pp[j] * qq[i - j];
}
}
}
return std::vector(rr, rr + sz);
}
#line 8 "test/yosupo/convolution_large.test.cpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
int N, M;
cin >> N >> M;
vector<Mint> a(N), b(M);
for (int i= 0; i < N; i++) cin >> a[i];
for (int j= 0; j < M; j++) cin >> b[j];
auto c= convolve<Mint, (1 << 25)>(a, b);
c.resize(N + M - 1);
for (int k= 0; k < N + M - 1; k++) {
cout << c[k] << " \n"[k == N + M - 2];
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | all_same_00 |
![]() |
7096 ms | 2002 MB |
g++-13 | all_same_01 |
![]() |
7785 ms | 2002 MB |
g++-13 | all_same_02 |
![]() |
7728 ms | 2002 MB |
g++-13 | example_00 |
![]() |
269 ms | 1740 MB |
g++-13 | example_01 |
![]() |
242 ms | 1741 MB |
g++-13 | fft_killer_00 |
![]() |
7987 ms | 2002 MB |
g++-13 | fft_killer_01 |
![]() |
7892 ms | 2002 MB |
g++-13 | fft_killer_02 |
![]() |
7995 ms | 2002 MB |
g++-13 | fft_killer_03 |
![]() |
8027 ms | 2002 MB |
g++-13 | fft_killer_04 |
![]() |
7914 ms | 2002 MB |
g++-13 | fft_killer_05 |
![]() |
8103 ms | 2002 MB |
g++-13 | fft_killer_06 |
![]() |
8109 ms | 2002 MB |
g++-13 | fft_killer_07 |
![]() |
8234 ms | 2002 MB |
g++-13 | fft_killer_08 |
![]() |
7994 ms | 2002 MB |
g++-13 | fft_killer_09 |
![]() |
8116 ms | 2002 MB |
g++-13 | max_ans_zero_00 |
![]() |
8010 ms | 2002 MB |
g++-13 | max_random_00 |
![]() |
7850 ms | 2002 MB |
g++-13 | max_random_01 |
![]() |
8110 ms | 2002 MB |
g++-13 | medium_00 |
![]() |
246 ms | 1741 MB |
g++-13 | medium_01 |
![]() |
236 ms | 1740 MB |
g++-13 | medium_02 |
![]() |
293 ms | 1741 MB |
g++-13 | medium_all_zero_00 |
![]() |
237 ms | 1741 MB |
g++-13 | medium_all_zero_01 |
![]() |
242 ms | 1741 MB |
g++-13 | medium_all_zero_02 |
![]() |
235 ms | 1741 MB |
g++-13 | medium_pre_suf_zero_00 |
![]() |
340 ms | 1741 MB |
g++-13 | medium_pre_suf_zero_01 |
![]() |
238 ms | 1741 MB |
g++-13 | medium_pre_suf_zero_02 |
![]() |
298 ms | 1740 MB |
g++-13 | medium_pre_suf_zero_03 |
![]() |
234 ms | 1741 MB |
g++-13 | medium_pre_suf_zero_04 |
![]() |
268 ms | 1741 MB |
g++-13 | random_00 |
![]() |
3398 ms | 1845 MB |
g++-13 | random_01 |
![]() |
4057 ms | 1870 MB |
g++-13 | random_02 |
![]() |
6701 ms | 1948 MB |
g++-13 | signed_overflow_00 |
![]() |
234 ms | 1740 MB |
g++-13 | small_00 |
![]() |
233 ms | 1740 MB |
g++-13 | small_01 |
![]() |
236 ms | 1740 MB |
g++-13 | small_02 |
![]() |
236 ms | 1740 MB |
g++-13 | small_03 |
![]() |
231 ms | 1740 MB |
g++-13 | small_04 |
![]() |
238 ms | 1740 MB |
g++-13 | small_05 |
![]() |
235 ms | 1740 MB |
g++-13 | small_06 |
![]() |
235 ms | 1741 MB |
g++-13 | small_07 |
![]() |
232 ms | 1740 MB |
g++-13 | small_08 |
![]() |
234 ms | 1741 MB |
g++-13 | small_09 |
![]() |
240 ms | 1740 MB |
g++-13 | small_10 |
![]() |
238 ms | 1741 MB |
g++-13 | small_11 |
![]() |
234 ms | 1740 MB |
g++-13 | small_12 |
![]() |
233 ms | 1741 MB |
g++-13 | small_13 |
![]() |
235 ms | 1740 MB |
g++-13 | small_14 |
![]() |
233 ms | 1740 MB |
g++-13 | small_15 |
![]() |
231 ms | 1740 MB |
g++-13 | small_and_large_00 |
![]() |
4049 ms | 1871 MB |
g++-13 | small_and_large_01 |
![]() |
4062 ms | 1871 MB |
g++-13 | small_and_large_02 |
![]() |
4108 ms | 1871 MB |
g++-13 | small_and_large_03 |
![]() |
4000 ms | 1871 MB |
g++-13 | unsigned_overflow_00 |
![]() |
231 ms | 1741 MB |
clang++-18 | all_same_00 |
![]() |
5525 ms | 2002 MB |
clang++-18 | all_same_01 |
![]() |
6353 ms | 2002 MB |
clang++-18 | all_same_02 |
![]() |
6362 ms | 2002 MB |
clang++-18 | example_00 |
![]() |
233 ms | 1740 MB |
clang++-18 | example_01 |
![]() |
233 ms | 1741 MB |
clang++-18 | fft_killer_00 |
![]() |
6518 ms | 2002 MB |
clang++-18 | fft_killer_01 |
![]() |
6443 ms | 2002 MB |
clang++-18 | fft_killer_02 |
![]() |
6470 ms | 2002 MB |
clang++-18 | fft_killer_03 |
![]() |
6641 ms | 2002 MB |
clang++-18 | fft_killer_04 |
![]() |
6502 ms | 2002 MB |
clang++-18 | fft_killer_05 |
![]() |
6495 ms | 2002 MB |
clang++-18 | fft_killer_06 |
![]() |
6452 ms | 2002 MB |
clang++-18 | fft_killer_07 |
![]() |
6621 ms | 2002 MB |
clang++-18 | fft_killer_08 |
![]() |
6518 ms | 2002 MB |
clang++-18 | fft_killer_09 |
![]() |
6632 ms | 2002 MB |
clang++-18 | max_ans_zero_00 |
![]() |
6567 ms | 2002 MB |
clang++-18 | max_random_00 |
![]() |
6387 ms | 2002 MB |
clang++-18 | max_random_01 |
![]() |
6515 ms | 2002 MB |
clang++-18 | medium_00 |
![]() |
246 ms | 1741 MB |
clang++-18 | medium_01 |
![]() |
240 ms | 1741 MB |
clang++-18 | medium_02 |
![]() |
234 ms | 1741 MB |
clang++-18 | medium_all_zero_00 |
![]() |
236 ms | 1741 MB |
clang++-18 | medium_all_zero_01 |
![]() |
242 ms | 1741 MB |
clang++-18 | medium_all_zero_02 |
![]() |
240 ms | 1741 MB |
clang++-18 | medium_pre_suf_zero_00 |
![]() |
244 ms | 1741 MB |
clang++-18 | medium_pre_suf_zero_01 |
![]() |
262 ms | 1740 MB |
clang++-18 | medium_pre_suf_zero_02 |
![]() |
243 ms | 1741 MB |
clang++-18 | medium_pre_suf_zero_03 |
![]() |
232 ms | 1741 MB |
clang++-18 | medium_pre_suf_zero_04 |
![]() |
235 ms | 1740 MB |
clang++-18 | random_00 |
![]() |
2726 ms | 1845 MB |
clang++-18 | random_01 |
![]() |
3361 ms | 1870 MB |
clang++-18 | random_02 |
![]() |
5287 ms | 1949 MB |
clang++-18 | signed_overflow_00 |
![]() |
238 ms | 1740 MB |
clang++-18 | small_00 |
![]() |
242 ms | 1740 MB |
clang++-18 | small_01 |
![]() |
230 ms | 1741 MB |
clang++-18 | small_02 |
![]() |
234 ms | 1740 MB |
clang++-18 | small_03 |
![]() |
235 ms | 1740 MB |
clang++-18 | small_04 |
![]() |
235 ms | 1740 MB |
clang++-18 | small_05 |
![]() |
236 ms | 1741 MB |
clang++-18 | small_06 |
![]() |
245 ms | 1740 MB |
clang++-18 | small_07 |
![]() |
235 ms | 1740 MB |
clang++-18 | small_08 |
![]() |
235 ms | 1740 MB |
clang++-18 | small_09 |
![]() |
238 ms | 1740 MB |
clang++-18 | small_10 |
![]() |
235 ms | 1740 MB |
clang++-18 | small_11 |
![]() |
284 ms | 1741 MB |
clang++-18 | small_12 |
![]() |
274 ms | 1740 MB |
clang++-18 | small_13 |
![]() |
256 ms | 1740 MB |
clang++-18 | small_14 |
![]() |
231 ms | 1740 MB |
clang++-18 | small_15 |
![]() |
291 ms | 1741 MB |
clang++-18 | small_and_large_00 |
![]() |
3235 ms | 1871 MB |
clang++-18 | small_and_large_01 |
![]() |
3230 ms | 1871 MB |
clang++-18 | small_and_large_02 |
![]() |
3210 ms | 1871 MB |
clang++-18 | small_and_large_03 |
![]() |
3238 ms | 1871 MB |
clang++-18 | unsigned_overflow_00 |
![]() |
235 ms | 1740 MB |