This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod
// competitive-verifier: TLE 1
// competitive-verifier: MLE 256
#include <iostream>
#include "src/Math/ModInt_Runtime.hpp"
#include "src/Math/FactorialPrecalculation.hpp"
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
using Mint= ModInt_Runtime<int>;
using F= FactorialPrecalculation<Mint>;
int T, m;
cin >> T >> m;
Mint::set_mod(m);
while (T--) {
int n, k;
cin >> n >> k;
cout << F::nCr(n, k) << '\n';
}
return 0;
}
#line 1 "test/yosupo/binomial_coefficient_prime_mod.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod
// competitive-verifier: TLE 1
// competitive-verifier: MLE 256
#include <iostream>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 3 "src/Math/ModInt_Runtime.hpp"
class Montgomery32 {}; // mod < 2^32 & mod is odd
class Montgomery64 {}; // mod < 2^62 & mod is odd
class Barrett {}; // 2^20 < mod <= 2^41
namespace math_internal {
struct r_b: m_b {};
}
template <class mod_t> constexpr bool is_runtimemodint_v= std::is_base_of_v<math_internal::r_b, mod_t>;
namespace math_internal {
template <class MP, u64 M, int id> struct RB: r_b {
static inline void set_mod(u64 m) { assert(m <= M), md= MP(m); }
static inline u64 max() { return M; }
protected:
static inline MP md;
};
template <class T, typename= enable_if_t<is_runtimemodint_v<T>>> constexpr u64 mv() { return T::max(); }
template <class Int, int id= -1> using ModInt_Runtime= conditional_t<is_same_v<Int, int>, MInt<u32, RB<MP_Na, u32(-1), id>>, conditional_t<is_same_v<Int, u32>, MInt<u32, RB<MP_Na, 0xFFFFFFFF, id>>, conditional_t<is_same_v<Int, long long>, MInt<u64, RB<MP_D2B1_1, (1ull << 63) - 1, id>>, conditional_t<is_same_v<Int, Montgomery32>, MInt<u32, RB<MP_Mo32, (1 << 30) - 1, id>>, conditional_t<is_same_v<Int, Montgomery64>, MInt<u64, RB<MP_Mo64, (1ull << 62) - 1, id>>, conditional_t<is_same_v<Int, Barrett>, MInt<u64, RB<MP_Br, 1ull << 41, id>>, MInt<u64, RB<MP_D2B1_2, u64(-1), id>>>>>>>>;
}
using math_internal::ModInt_Runtime;
#line 3 "src/Math/FactorialPrecalculation.hpp"
#include <vector>
#line 5 "src/Math/FactorialPrecalculation.hpp"
template <class mod_t> class FactorialPrecalculation {
static_assert(is_modint_v<mod_t>);
static inline std::vector<mod_t> iv, fct, fiv;
public:
static void reset() { iv.clear(), fct.clear(), fiv.clear(); }
static inline mod_t inv(int n) {
assert(0 < n);
if (int k= iv.size(); k <= n) {
if (iv.resize(n + 1); !k) iv[1]= 1, k= 2;
for (unsigned long long mod= mod_t::mod(), q; k <= n; ++k) q= (mod + k - 1) / k, iv[k]= iv[k * q - mod] * q;
}
return iv[n];
}
static inline mod_t fact(int n) {
assert(0 <= n);
if (int k= fct.size(); k <= n) {
if (fct.resize(n + 1); !k) fct[0]= 1, k= 1;
for (; k <= n; ++k) fct[k]= fct[k - 1] * k;
}
return fct[n];
}
static inline mod_t finv(int n) {
assert(0 <= n);
if (int k= fiv.size(); k <= n) {
if (fiv.resize(n + 1); !k) fiv[0]= 1, k= 1;
for (; k <= n; ++k) fiv[k]= fiv[k - 1] * inv(k);
}
return fiv[n];
}
static inline mod_t nPr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r); }
// [x^r] (1 + x)^n
static inline mod_t nCr(int n, int r) { return r < 0 || n < r ? mod_t(0) : fact(n) * finv(n - r) * finv(r); }
// [x^r] (1 - x)^{-n}
static inline mod_t nHr(int n, int r) { return !r ? mod_t(1) : nCr(n + r - 1, r); }
};
#line 7 "test/yosupo/binomial_coefficient_prime_mod.test.cpp"
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
using Mint= ModInt_Runtime<int>;
using F= FactorialPrecalculation<Mint>;
int T, m;
cin >> T >> m;
Mint::set_mod(m);
while (T--) {
int n, k;
cin >> n >> k;
cout << F::nCr(n, k) << '\n';
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | example_00 |
![]() |
5 ms | 4 MB |
g++-13 | example_01 |
![]() |
5 ms | 4 MB |
g++-13 | large_random_00 |
![]() |
461 ms | 147 MB |
g++-13 | large_random_01 |
![]() |
471 ms | 154 MB |
g++-13 | large_random_02 |
![]() |
443 ms | 146 MB |
g++-13 | med_random_00 |
![]() |
201 ms | 9 MB |
g++-13 | med_random_01 |
![]() |
186 ms | 8 MB |
g++-13 | med_random_02 |
![]() |
222 ms | 14 MB |
g++-13 | mod1000000007_00 |
![]() |
445 ms | 144 MB |
g++-13 | mod1000000007_01 |
![]() |
465 ms | 143 MB |
g++-13 | mod2_00 |
![]() |
134 ms | 4 MB |
g++-13 | mod2_01 |
![]() |
131 ms | 4 MB |
g++-13 | mod3_00 |
![]() |
124 ms | 4 MB |
g++-13 | mod3_01 |
![]() |
128 ms | 3 MB |
g++-13 | mod998244353_00 |
![]() |
459 ms | 144 MB |
g++-13 | mod998244353_01 |
![]() |
459 ms | 144 MB |
g++-13 | mod998244353_maxi_00 |
![]() |
528 ms | 143 MB |
g++-13 | small_random_00 |
![]() |
126 ms | 4 MB |
g++-13 | small_random_01 |
![]() |
126 ms | 3 MB |
g++-13 | small_random_02 |
![]() |
124 ms | 4 MB |
clang++-18 | example_00 |
![]() |
6 ms | 4 MB |
clang++-18 | example_01 |
![]() |
6 ms | 4 MB |
clang++-18 | large_random_00 |
![]() |
429 ms | 148 MB |
clang++-18 | large_random_01 |
![]() |
440 ms | 155 MB |
clang++-18 | large_random_02 |
![]() |
419 ms | 143 MB |
clang++-18 | med_random_00 |
![]() |
209 ms | 9 MB |
clang++-18 | med_random_01 |
![]() |
199 ms | 8 MB |
clang++-18 | med_random_02 |
![]() |
217 ms | 14 MB |
clang++-18 | mod1000000007_00 |
![]() |
421 ms | 148 MB |
clang++-18 | mod1000000007_01 |
![]() |
428 ms | 144 MB |
clang++-18 | mod2_00 |
![]() |
135 ms | 4 MB |
clang++-18 | mod2_01 |
![]() |
138 ms | 4 MB |
clang++-18 | mod3_00 |
![]() |
127 ms | 4 MB |
clang++-18 | mod3_01 |
![]() |
126 ms | 4 MB |
clang++-18 | mod998244353_00 |
![]() |
429 ms | 148 MB |
clang++-18 | mod998244353_01 |
![]() |
435 ms | 146 MB |
clang++-18 | mod998244353_maxi_00 |
![]() |
487 ms | 146 MB |
clang++-18 | small_random_00 |
![]() |
131 ms | 4 MB |
clang++-18 | small_random_01 |
![]() |
132 ms | 4 MB |
clang++-18 | small_random_02 |
![]() |
128 ms | 4 MB |