This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://loj.ac/p/6686
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include "src/Math/ModInt.hpp"
#include "src/NumberTheory/ArrayOnDivisors.hpp"
#include "src/NumberTheory/sum_on_primes.hpp"
using namespace std;
template <class Tp> void read(Tp &x) {
static char ch;
static bool neg;
for (ch= neg= 0; ch < '0' || ch > '9'; neg|= (ch == '-'), ch= getchar());
for (x= 0; ch >= '0' && ch <= '9'; (x*= 10)+= (ch ^ 48), ch= getchar());
neg && (x= -x);
}
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
using u128= __uint128_t;
using u64= uint64_t;
u128 n= 0;
read(n);
u64 l= 0, h= 1e10 + 10;
while (h - l > 1) {
u64 x= (h + l) / 2;
u128 t= u128(x) * x * x;
if (t <= n) l= x;
else h= x;
}
u64 r= l - 1;
u128 m= u128(l) * l * l;
Mint ans= 0;
ArrayOnDivisors<u64, u64> totient(l);
totient.set_totient();
for (auto [d, phi]: totient) ans+= Mint(n / d - (m - 1) / d) * phi;
auto Ps= sums_of_powers_on_primes<Mint>(r, 2);
auto f= [&](Mint p, int e) { return p.pow(e - 1) * (p * (e + 1) - e); };
auto g= [&](Mint p, int e) { return p.pow(e + e - 1) * (p * (e + 1) - e); };
ans+= multiplicative_sum<Mint>(2 * Ps[1] - Ps[0], f) * 3;
ans+= multiplicative_sum<Mint>(2 * Ps[2] - Ps[1], g) * 3;
ans+= Mint(r) * (r + 1) / 2;
cout << ans << '\n';
return 0;
}
#line 1 "test/loj/6686.mul.test.cpp"
// competitive-verifier: PROBLEM https://loj.ac/p/6686
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 2 "src/NumberTheory/Factors.hpp"
#include <numeric>
#line 5 "src/NumberTheory/Factors.hpp"
#include <algorithm>
#include <vector>
#line 3 "src/NumberTheory/is_prime.hpp"
namespace math_internal {
template <class Uint, class MP, u32... args> constexpr bool miller_rabin(Uint n) {
const MP md(n);
const Uint s= __builtin_ctzll(n - 1), d= n >> s, one= md.set(1), n1= md.norm(md.set(n - 1));
for (u32 a: (u32[]){args...})
if (Uint b= a % n; b)
if (Uint p= md.norm(pow(md.set(b), d, md)); p != one)
for (int i= s; p != n1; p= md.norm(md.mul(p, p)))
if (!(--i)) return 0;
return 1;
}
}
constexpr bool is_prime(unsigned long long n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
if (n < (1 << 30)) return math_internal::miller_rabin<unsigned, math_internal::MP_Mo32, 2, 7, 61>(n);
if (n < (1ull << 62)) return math_internal::miller_rabin<unsigned long long, math_internal::MP_Mo64, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
if (n < (1ull << 63)) return math_internal::miller_rabin<unsigned long long, math_internal::MP_D2B1_1, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
return math_internal::miller_rabin<unsigned long long, math_internal::MP_D2B1_2, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
}
#line 4 "src/Math/binary_gcd.hpp"
#include <cstdint>
template <class Int> constexpr int bsf(Int a) {
if constexpr (sizeof(Int) == 16) {
uint64_t lo= a & uint64_t(-1);
return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);
} else if constexpr (sizeof(Int) == 8) return __builtin_ctzll(a);
else return __builtin_ctz(a);
}
template <class Int> constexpr Int binary_gcd(Int a, Int b) {
if (a == 0 || b == 0) return a + b;
int n= bsf(a), m= bsf(b), s= 0;
for (a>>= n, b>>= m; a != b;) {
Int d= a - b;
bool f= a > b;
s= bsf(d), b= f ? b : a, a= (f ? d : -d) >> s;
}
return a << std::min(n, m);
}
#line 9 "src/NumberTheory/Factors.hpp"
namespace math_internal {
template <class T> constexpr void bubble_sort(T *bg, T *ed) {
for (int sz= ed - bg, i= 0; i < sz; i++)
for (int j= sz; --j > i;)
if (auto tmp= bg[j - 1]; bg[j - 1] > bg[j]) bg[j - 1]= bg[j], bg[j]= tmp;
}
template <class T, size_t _Nm> struct ConstexprArray {
constexpr size_t size() const { return sz; }
constexpr auto &operator[](int i) const { return dat[i]; }
constexpr auto *begin() const { return dat; }
constexpr auto *end() const { return dat + sz; }
protected:
T dat[_Nm]= {};
size_t sz= 0;
friend ostream &operator<<(ostream &os, const ConstexprArray &r) {
os << "[";
for (size_t i= 0; i < r.sz; ++i) os << r[i] << ",]"[i == r.sz - 1];
return os;
}
};
class Factors: public ConstexprArray<pair<u64, uint16_t>, 16> {
template <class Uint, class MP> static constexpr Uint rho(Uint n, Uint c) {
const MP md(n);
auto f= [&md, c](Uint x) { return md.plus(md.mul(x, x), c); };
const Uint m= 1LL << (__lg(n) / 5);
Uint x= 1, y= md.set(2), z= 1, q= md.set(1), g= 1;
for (Uint r= 1, i= 0; g == 1; r<<= 1) {
for (x= y, i= r; i--;) y= f(y);
for (Uint k= 0; k < r && g == 1; g= binary_gcd<Uint>(md.get(q), n), k+= m)
for (z= y, i= min(m, r - k); i--;) y= f(y), q= md.mul(q, md.diff(y, x));
}
if (g == n) do {
z= f(z), g= binary_gcd<Uint>(md.get(md.diff(z, x)), n);
} while (g == 1);
return g;
}
static constexpr u64 find_prime_factor(u64 n) {
if (is_prime(n)) return n;
for (u64 i= 100; i--;)
if (n= n < (1 << 30) ? rho<u32, MP_Mo32>(n, i + 1) : n < (1ull << 62) ? rho<u64, MP_Mo64>(n, i + 1) : n < (1ull << 62) ? rho<u64, MP_D2B1_1>(n, i + 1) : rho<u64, MP_D2B1_2>(n, i + 1); is_prime(n)) return n;
return 0;
}
constexpr void init(u64 n) {
for (u64 p= 2; p < 98 && p * p <= n; ++p)
if (n % p == 0)
for (dat[sz++].first= p; n % p == 0;) n/= p, ++dat[sz - 1].second;
for (u64 p= 0; n > 1; dat[sz++].first= p)
for (p= find_prime_factor(n); n % p == 0;) n/= p, ++dat[sz].second;
}
public:
constexpr Factors()= default;
constexpr Factors(u64 n) { init(n), bubble_sort(dat, dat + sz); }
};
}
using math_internal::Factors;
constexpr uint64_t totient(const Factors &f) {
uint64_t ret= 1, i= 0;
for (auto [p, e]: f)
for (ret*= p - 1, i= e; --i;) ret*= p;
return ret;
}
constexpr auto totient(uint64_t n) { return totient(Factors(n)); }
template <class Uint= uint64_t> std::vector<Uint> enumerate_divisors(const Factors &f) {
int k= 1;
for (auto [p, e]: f) k*= e + 1;
std::vector<Uint> ret(k, 1);
k= 1;
for (auto [p, e]: f) {
int sz= k;
for (Uint pw= 1; pw*= p, e--;)
for (int j= 0; j < sz;) ret[k++]= ret[j++] * pw;
}
return ret;
}
template <class Uint> std::vector<Uint> enumerate_divisors(Uint n) { return enumerate_divisors<Uint>(Factors(n)); }
#line 3 "src/NumberTheory/ArrayOnDivisors.hpp"
template <class Int, class T> struct ArrayOnDivisors {
using Hint= std::conditional_t<sizeof(Int) == 8, unsigned, uint16_t>;
Int n;
uint8_t shift;
std::vector<Hint> os, id;
std::vector<std::pair<Int, T>> dat;
Hint hash(uint64_t i) const { return (i * 11995408973635179863ULL) >> shift; }
#define _UP for (int j= k; j < a; ++j)
#define _DWN for (int j= a; j-- > k;)
#define _OP(J, K, op) dat[i + J].second op##= dat[i + K].second
#define _FUN(J, K, name) name(dat[i + J].second, dat[i + K].second)
#define _ZETA(op) \
int k= 1; \
for (auto [p, e]: factors) { \
int a= k * (e + 1); \
for (int i= 0, d= dat.size(); i < d; i+= a) op; \
k= a; \
}
public:
Factors factors;
ArrayOnDivisors() {}
template <class Uint> ArrayOnDivisors(Int N, const Factors &factors, const std::vector<Uint> &divisors): n(N), shift(__builtin_clzll(divisors.size()) - 1), os((1 << (64 - shift)) + 1), id(divisors.size()), dat(divisors.size()), factors(factors) {
static_assert(std::is_integral_v<Uint>, "Uint must be integral");
int m= divisors.size(), i= 0;
for (; i < m; ++i) ++os[hash(dat[i].first= divisors[i])];
for (std::partial_sum(os.begin(), os.end(), os.begin()); i--;) id[--os[hash(divisors[i])]]= i;
}
ArrayOnDivisors(Int N, const Factors &factors): ArrayOnDivisors(N, factors, enumerate_divisors(factors)) {}
ArrayOnDivisors(Int N): ArrayOnDivisors(N, Factors(N)) {}
T &operator[](Int i) {
assert(i && n % i == 0);
for (unsigned a= hash(i), j= os[a]; j < os[a + 1]; ++j)
if (auto &[d, v]= dat[id[j]]; d == i) return v;
assert(0);
}
const T &operator[](Int i) const {
assert(i && n % i == 0);
for (unsigned a= hash(i), j= os[a]; j < os[a + 1]; ++j)
if (auto &[d, v]= dat[id[j]]; d == i) return v;
assert(0);
}
size_t size() const { return dat.size(); }
auto begin() { return dat.begin(); }
auto begin() const { return dat.begin(); }
auto end() { return dat.begin() + os.back(); }
auto end() const { return dat.begin() + os.back(); }
/* f -> g s.t. g(n) = sum_{m|n} f(m) */
void divisor_zeta() { _ZETA(_UP _OP(j, j - k, +)) }
/* f -> h s.t. f(n) = sum_{m|n} h(m) */
void divisor_mobius() { _ZETA(_DWN _OP(j, j - k, -)) }
/* f -> g s.t. g(n) = sum_{n|m} f(m) */
void multiple_zeta() { _ZETA(_DWN _OP(j - k, j, +)) }
/* f -> h s.t. f(n) = sum_{n|m} h(m) */
void multiple_mobius() { _ZETA(_UP _OP(j - k, j, -)) }
/* f -> g s.t. g(n) = sum_{m|n} f(m), add(T& a, T b): a+=b */
template <class F> void divisor_zeta(const F &add) { _ZETA(_UP _FUN(j, j - k, add)) }
/* f -> h s.t. f(n) = sum_{m|n} h(m), sub(T& a, T b): a-=b */
template <class F> void divisor_mobius(const F &sub) { _ZETA(_UP _FUN(j, j - k, sub)) }
/* f -> g s.t. g(n) = sum_{n|m} f(m), add(T& a, T b): a+=b */
template <class F> void multiple_zeta(const F &add) { _ZETA(_UP _FUN(j - k, j, add)) }
/* f -> h s.t. f(n) = sum_{n|m} h(m), sub(T& a, T b): a-=b */
template <class F> void multiple_mobius(const F &sub) { _ZETA(_UP _FUN(j - k, j, sub)) }
#undef _UP
#undef _DWN
#undef _OP
#undef _ZETA
// f(p,e): multiplicative function of p^e
template <typename F> void set_multiplicative(const F &f) {
int k= 1;
dat[0].second= 1;
for (auto [p, e]: factors)
for (int m= k, d= 1; d <= e; ++d)
for (int i= 0; i < m;) dat[k++].second= dat[i++].second * f(p, d);
}
void set_totient() {
int k= 1;
dat[0].second= 1;
for (auto [p, e]: factors) {
Int b= p - 1;
for (int m= k; e--; b*= p)
for (int i= 0; i < m;) dat[k++].second= dat[i++].second * b;
}
}
void set_mobius() {
set_multiplicative([](auto, auto e) { return e == 1 ? -1 : 0; });
}
};
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#line 6 "src/Internal/ListRange.hpp"
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 5 "src/NumberTheory/enumerate_primes.hpp"
namespace nt_internal {
using namespace std;
vector<int> ps, lf;
void sieve(int N) {
static int n= 2;
if (n > N) return;
if (lf.resize((N + 1) >> 1); n == 2) ps.push_back(n++);
int M= (N - 1) / 2;
for (int j= 1, e= ps.size(); j < e; ++j) {
int p= ps[j];
if (int64_t(p) * p > N) break;
for (auto k= int64_t(p) * max(n / p / 2 * 2 + 1, p) / 2; k <= M; k+= p) lf[k]+= p * !lf[k];
}
for (; n <= N; n+= 2)
if (!lf[n >> 1]) {
ps.push_back(lf[n >> 1]= n);
for (auto j= int64_t(n) * n / 2; j <= M; j+= n) lf[j]+= n * !lf[j];
}
}
ConstListRange<int> enumerate_primes() { return {ps.cbegin(), ps.cend()}; }
ConstListRange<int> enumerate_primes(int N) {
sieve(N);
return {ps.cbegin(), upper_bound(ps.cbegin(), ps.cend(), N)};
}
int least_prime_factor(int n) { return n & 1 ? sieve(n), lf[(n >> 1)] : 2; }
// f(p,e) := f(p^e)
template <class T, class F> vector<T> completely_multiplicative_table(int N, const F &f) {
vector<T> ret(N + 1);
sieve(N);
for (int n= 3, i= 1; n <= N; n+= 2, ++i) ret[n]= lf[i] == n ? f(n, 1) : ret[lf[i]] * ret[n / lf[i]];
if (int n= 4; 2 <= N)
for (T t= ret[2]= f(2, 1); n <= N; n+= 2) ret[n]= t * ret[n >> 1];
return ret[1]= 1, ret;
}
}
using nt_internal::enumerate_primes, nt_internal::least_prime_factor, nt_internal::completely_multiplicative_table;
// O(N log k / log N + N)
template <class T> static std::vector<T> pow_table(int N, uint64_t k) {
if (k == 0) return std::vector<T>(N + 1, 1);
auto f= [k](int p, int) {
T ret= 1, b= p;
for (auto e= k;; b*= b) {
if (e & 1) ret*= b;
if (!(e>>= 1)) return ret;
}
};
return completely_multiplicative_table<T>(N, f);
}
#line 3 "src/NumberTheory/CumSumQuotient.hpp"
#include <valarray>
template <class T> struct CumSumQuotient {
uint64_t N;
size_t K;
std::valarray<T> X;
CumSumQuotient(uint64_t N): N(N), K(std::sqrt(N)), X(K + K + 1) {}
T &operator[](uint64_t i) { return i > K ? X[K + double(N) / i] : X[i]; }
T operator()(uint64_t i) const { return i > K ? X[K + double(N) / i] : X[i]; }
CumSumQuotient &operator+=(const CumSumQuotient &r) { return X+= r.X, *this; }
CumSumQuotient &operator-=(const CumSumQuotient &r) { return X-= r.X, *this; }
CumSumQuotient &operator*=(T a) { return X*= a, *this; }
CumSumQuotient operator-() const {
CumSumQuotient ret= *this;
return ret.X= -ret.X, ret;
}
CumSumQuotient operator+(const CumSumQuotient &r) const { return CumSumQuotient(*this)+= r; }
CumSumQuotient operator-(const CumSumQuotient &r) const { return CumSumQuotient(*this)-= r; }
CumSumQuotient operator*(T a) const { return CumSumQuotient(*this)*= a; }
friend CumSumQuotient operator*(T a, const CumSumQuotient &x) { return x * a; }
void add(uint64_t i, T v) {
for (size_t j= std::min<uint64_t>(N / i, K) + K; j >= i; --j) X[j]+= v;
}
T sum() const { return X[K + 1]; }
T sum(uint64_t i) const { return i > K ? X[K + double(N) / i] : X[i]; }
};
#line 4 "src/NumberTheory/sum_on_primes.hpp"
template <class T> std::vector<CumSumQuotient<T>> sums_of_powers_on_primes(uint64_t N, size_t D) {
size_t K= std::sqrt(N);
std::vector ret(D + 1, CumSumQuotient<T>(N));
for (size_t n= 1, d= 0; n <= K; ++n, d= 0)
for (T prd= n; d <= D; prd*= (n + ++d)) ret[d].X[n]= prd / (d + 1);
for (size_t n= 1, d= 0; n <= K; ++n, d= 0)
for (T prd= N / n; d <= D; prd*= ((N / n) + ++d)) ret[d].X[n + K]= prd / (d + 1);
if (D >= 2) {
std::vector<T> stir(D + 1, 0);
stir[1]= 1;
for (size_t d= 2; d <= D; stir[d++]= 1) {
for (size_t j= d; --j;) stir[j]= stir[j - 1] + stir[j] * (d - 1);
for (size_t j= 1; j < d; ++j) ret[d].X-= stir[j] * ret[j].X;
}
}
for (size_t d= 0; d <= D; ++d) ret[d].X-= 1;
for (int p: enumerate_primes(K)) {
uint64_t q= uint64_t(p) * p, M= N / p;
T pw= 1;
for (size_t d= 0, t= K / p, u= std::min<uint64_t>(K, N / q); d <= D; ++d, pw*= p) {
auto &X= ret[d].X;
T tk= X[p - 1];
for (size_t n= 1; n <= t; ++n) X[n + K]-= (X[n * p + K] - tk) * pw;
for (size_t n= t + 1; n <= u; ++n) X[n + K]-= (X[double(M) / n] - tk) * pw;
for (uint64_t n= K; n >= q; --n) X[n]-= (X[double(n) / p] - tk) * pw;
}
}
return ret;
}
template <class T, class F> T additive_sum(const CumSumQuotient<T> &P, const F &f) {
T ret= P.sum();
for (uint64_t d= 2, nN, nd; nN= double(P.N) / d; d= nd) ret+= P(nN) * ((nd= double(P.N) / nN + 1) - d);
for (uint64_t p: enumerate_primes(P.K))
for (uint64_t pw= p * p, e= 2; pw <= P.N; ++e, pw*= p) ret+= (f(p, e) - f(p, e - 1)) * (P.N / pw);
return ret;
}
template <class T, class F> T multiplicative_sum(CumSumQuotient<T> P, const F &f) {
auto ps= enumerate_primes(P.K);
size_t psz= ps.size();
for (size_t j= psz; j--;) {
uint64_t p= ps[j], M= P.N / p, q= p * p;
size_t t= P.K / p, u= std::min<uint64_t>(P.K, P.N / q);
T tk= P.X[p - 1];
for (auto i= q; i <= P.K; ++i) P.X[i]+= (P.X[double(i) / p] - tk) * f(p, 1);
for (size_t i= u; i > t; --i) P.X[i + P.K]+= (P.X[double(M) / i] - tk) * f(p, 1);
for (size_t i= t; i; --i) P.X[i + P.K]+= (P.X[i * p + P.K] - tk) * f(p, 1);
}
P.X+= 1;
auto dfs= [&](auto &rc, uint64_t n, size_t bg, T cf) -> T {
if (cf == T(0)) return T(0);
T ret= cf * P(n);
for (auto i= bg; i < psz; ++i) {
uint64_t p= ps[i], q= p * p, nn= n / q;
if (!nn) break;
for (int e= 2; nn; nn/= p, ++e) ret+= rc(rc, nn, i + 1, cf * (f(p, e) - f(p, 1) * f(p, e - 1)));
}
return ret;
};
return dfs(dfs, P.N, 0, 1);
}
#line 9 "test/loj/6686.mul.test.cpp"
using namespace std;
template <class Tp> void read(Tp &x) {
static char ch;
static bool neg;
for (ch= neg= 0; ch < '0' || ch > '9'; neg|= (ch == '-'), ch= getchar());
for (x= 0; ch >= '0' && ch <= '9'; (x*= 10)+= (ch ^ 48), ch= getchar());
neg && (x= -x);
}
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
using u128= __uint128_t;
using u64= uint64_t;
u128 n= 0;
read(n);
u64 l= 0, h= 1e10 + 10;
while (h - l > 1) {
u64 x= (h + l) / 2;
u128 t= u128(x) * x * x;
if (t <= n) l= x;
else h= x;
}
u64 r= l - 1;
u128 m= u128(l) * l * l;
Mint ans= 0;
ArrayOnDivisors<u64, u64> totient(l);
totient.set_totient();
for (auto [d, phi]: totient) ans+= Mint(n / d - (m - 1) / d) * phi;
auto Ps= sums_of_powers_on_primes<Mint>(r, 2);
auto f= [&](Mint p, int e) { return p.pow(e - 1) * (p * (e + 1) - e); };
auto g= [&](Mint p, int e) { return p.pow(e + e - 1) * (p * (e + 1) - e); };
ans+= multiplicative_sum<Mint>(2 * Ps[1] - Ps[0], f) * 3;
ans+= multiplicative_sum<Mint>(2 * Ps[2] - Ps[1], g) * 3;
ans+= Mint(r) * (r + 1) / 2;
cout << ans << '\n';
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | gcd1 |
![]() |
5 ms | 4 MB |
g++-13 | gcd10 |
![]() |
6 ms | 4 MB |
g++-13 | gcd11 |
![]() |
8 ms | 4 MB |
g++-13 | gcd12 |
![]() |
8 ms | 4 MB |
g++-13 | gcd13 |
![]() |
8 ms | 4 MB |
g++-13 | gcd14 |
![]() |
8 ms | 4 MB |
g++-13 | gcd15 |
![]() |
8 ms | 4 MB |
g++-13 | gcd16 |
![]() |
311 ms | 8 MB |
g++-13 | gcd17 |
![]() |
309 ms | 8 MB |
g++-13 | gcd18 |
![]() |
308 ms | 8 MB |
g++-13 | gcd19 |
![]() |
308 ms | 8 MB |
g++-13 | gcd2 |
![]() |
5 ms | 4 MB |
g++-13 | gcd20 |
![]() |
231 ms | 7 MB |
g++-13 | gcd3 |
![]() |
5 ms | 4 MB |
g++-13 | gcd4 |
![]() |
5 ms | 4 MB |
g++-13 | gcd5 |
![]() |
5 ms | 4 MB |
g++-13 | gcd6 |
![]() |
6 ms | 4 MB |
g++-13 | gcd7 |
![]() |
5 ms | 4 MB |
g++-13 | gcd8 |
![]() |
6 ms | 4 MB |
g++-13 | gcd9 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd1 |
![]() |
5 ms | 4 MB |
clang++-18 | gcd10 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd11 |
![]() |
9 ms | 4 MB |
clang++-18 | gcd12 |
![]() |
9 ms | 4 MB |
clang++-18 | gcd13 |
![]() |
9 ms | 4 MB |
clang++-18 | gcd14 |
![]() |
9 ms | 4 MB |
clang++-18 | gcd15 |
![]() |
9 ms | 4 MB |
clang++-18 | gcd16 |
![]() |
412 ms | 8 MB |
clang++-18 | gcd17 |
![]() |
412 ms | 8 MB |
clang++-18 | gcd18 |
![]() |
410 ms | 8 MB |
clang++-18 | gcd19 |
![]() |
417 ms | 8 MB |
clang++-18 | gcd2 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd20 |
![]() |
307 ms | 7 MB |
clang++-18 | gcd3 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd4 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd5 |
![]() |
5 ms | 4 MB |
clang++-18 | gcd6 |
![]() |
7 ms | 4 MB |
clang++-18 | gcd7 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd8 |
![]() |
6 ms | 4 MB |
clang++-18 | gcd9 |
![]() |
6 ms | 4 MB |