This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://www.hackerrank.com/contests/happy-query-contest/challenges/grid-xor-query
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include "src/DataStructure/SegmentTree_2D.hpp"
// 2次元xor
using namespace std;
struct RxorQ {
using T= int;
static T ti() { return 0; }
static T op(T l, T r) { return l ^ r; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using KDT= SegmentTree_2D<int, RxorQ>;
int N;
cin >> N;
vector<array<int, 3>> vec(N);
for (int i= 0; i < N; i++) {
int x, y, v;
cin >> x >> y >> v;
vec[i]= {x, y, v};
}
KDT kdt(vec);
int Q;
cin >> Q;
while (Q--) {
int a, b, c, d;
cin >> a >> b >> c >> d;
cout << kdt.prod(a, b + 1, c, d + 1) << '\n';
}
return 0;
}
#line 1 "test/hackerrank/grid-xor-query.Seg2D.test.cpp"
// competitive-verifier: PROBLEM https://www.hackerrank.com/contests/happy-query-contest/challenges/grid-xor-query
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#line 3 "src/DataStructure/SegmentTree_2D.hpp"
#include <algorithm>
#include <numeric>
#include <map>
#include <set>
#include <cassert>
#line 2 "src/Internal/tuple_traits.hpp"
#include <tuple>
#include <array>
#include <type_traits>
#include <cstddef>
template <class T> static constexpr bool tuple_like_v= false;
template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true;
template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true;
template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true;
template <class T> auto to_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t);
}
template <class T> auto forward_tuple(const T &t) {
if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t);
}
template <class T> static constexpr bool array_like_v= false;
template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true;
template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>;
template <class T> static constexpr bool array_like_v<std::tuple<T>> = true;
template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>;
template <class T> auto to_array(const T &t) {
if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t);
}
template <class T> using to_tuple_t= decltype(to_tuple(T()));
template <class T> using to_array_t= decltype(to_array(T()));
#line 9 "src/DataStructure/SegmentTree_2D.hpp"
template <class pos_t, class M> class SegmentTree_2D {
using T= typename M::T;
using Pos= std::array<pos_t, 2>;
std::vector<pos_t> xs;
std::vector<Pos> yxs;
std::vector<int> id, tol;
std::vector<T> val;
template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t>>;
template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<pos_t, pos_t, T>>;
template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>;
int sz;
inline int x2i(pos_t x) const { return std::lower_bound(xs.begin(), xs.end(), x) - xs.begin(); }
inline int y2i(pos_t y) const {
return std::lower_bound(yxs.begin(), yxs.end(), Pos{y, 0}, [](const Pos &a, const Pos &b) { return a[0] < b[0]; }) - yxs.begin();
}
inline int xy2i(pos_t x, pos_t y) const {
Pos p{y, x};
auto it= std::lower_bound(yxs.begin(), yxs.end(), p);
return assert(p == *it), it - yxs.begin();
}
template <bool z, size_t k, class P> inline auto get_(const P &p) {
if constexpr (z) return std::get<k>(p);
else return std::get<k>(p.first);
}
template <bool z, class XYW> inline void build(const XYW *xyw, int n, const T &v= M::ti()) {
xs.resize(n);
for (int i= n; i--;) xs[i]= get_<z, 0>(xyw[i]);
std::sort(xs.begin(), xs.end()), xs.erase(std::unique(xs.begin(), xs.end()), xs.end()), id.resize((sz= 1 << (32 - __builtin_clz(xs.size()))) + xs.size() + 1);
std::vector<int> ord(n);
for (int j= n; j--;)
for (int i= x2i(get_<z, 0>(xyw[j])) + sz; i; i>>= 1) ++id[i + 1];
for (int i= 1, e= sz + xs.size(); i < e; ++i) id[i + 1]+= id[i];
val.assign(id.back() * 2, M::ti()), tol.resize(id[sz] + 1), std::iota(ord.begin(), ord.end(), 0), std::sort(ord.begin(), ord.end(), [&](int i, int j) { return get_<z, 1>(xyw[i]) == get_<z, 1>(xyw[j]) ? get_<z, 0>(xyw[i]) < get_<z, 0>(xyw[j]) : get_<z, 1>(xyw[i]) < get_<z, 1>(xyw[j]); });
{
std::vector<int> ptr= id;
for (int r: ord)
for (int i= x2i(get_<z, 0>(xyw[r])) + sz, j= -1; i; j= i, i>>= 1) {
int p= ptr[i]++;
if constexpr (z) {
if constexpr (std::tuple_size_v<XYW> == 3) val[id[i + 1] + p]= std::get<2>(xyw[r]);
else val[id[i + 1] + p]= v;
} else val[id[i + 1] + p]= xyw[r].second;
if (j != -1) tol[p + 1]= !(j & 1);
}
for (int i= 1, e= id[sz]; i < e; ++i) tol[i + 1]+= tol[i];
for (int i= 0, e= sz + xs.size(); i < e; ++i) {
auto dat= val.begin() + id[i] * 2;
for (int j= id[i + 1] - id[i]; --j > 0;) dat[j]= M::op(dat[j * 2], dat[j * 2 + 1]);
}
}
yxs.resize(n);
for (int i= n; i--;) yxs[i]= {get_<z, 1>(xyw[ord[i]]), get_<z, 0>(xyw[ord[i]])};
}
inline T prdi(int i, int a, int b) const {
int n= id[i + 1] - id[i];
T ret= M::ti();
auto dat= val.begin() + id[i] * 2;
for (a+= n, b+= n; a < b; a>>= 1, b>>= 1) {
if (a & 1) ret= M::op(ret, dat[a++]);
if (b & 1) ret= M::op(dat[--b], ret);
}
return ret;
}
template <bool z> inline void seti(int i, int j, T v) {
auto dat= val.begin() + id[i] * 2;
j+= id[i + 1] - id[i];
if constexpr (z) dat[j]= v;
else dat[j]= M::op(dat[j], v);
for (; j;) j>>= 1, dat[j]= M::op(dat[2 * j], dat[2 * j + 1]);
}
template <bool z> inline void set_(pos_t x, pos_t y, T v) {
for (int i= 1, p= xy2i(x, y);;) {
if (seti<z>(i, p - id[i], v); i >= sz) break;
if (int lc= tol[p] - tol[id[i]], rc= (p - id[i]) - lc; tol[p + 1] - tol[p]) p= id[2 * i] + lc, i= 2 * i;
else p= id[2 * i + 1] + rc, i= 2 * i + 1;
}
}
public:
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const P *p, size_t n) { build<1>(p, n); }
template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> SegmentTree_2D(const std::vector<P> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> SegmentTree_2D(const std::set<P> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const P *p, size_t n, const U &v) { build<1>(p, n, v); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<P> &p, const U &v): SegmentTree_2D(p.data(), p.size(), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::set<P> &p, const U &v): SegmentTree_2D(std::vector(p.begin(), p.end()), v) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::pair<P, U> *p, size_t n) { build<0>(p, n); }
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::vector<std::pair<P, U>> &p): SegmentTree_2D(p.data(), p.size()) {}
template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> SegmentTree_2D(const std::map<P, U> &p): SegmentTree_2D(std::vector(p.begin(), p.end())) {}
// [l,r) x [u,d)
T prod(pos_t l, pos_t r, pos_t u, pos_t d) const {
T ret= M::ti();
int L= x2i(l), R= x2i(r);
auto dfs= [&](auto &dfs, int i, int a, int b, int c, int d) -> void {
if (c == d || R <= a || b <= L) return;
if (L <= a && b <= R) return ret= M::op(ret, prdi(i, c, d)), void();
int m= (a + b) / 2, ac= tol[id[i] + c] - tol[id[i]], bc= c - ac, ad= tol[id[i] + d] - tol[id[i]], bd= d - ad;
dfs(dfs, i * 2, a, m, ac, ad), dfs(dfs, i * 2 + 1, m, b, bc, bd);
};
return dfs(dfs, 1, 0, sz, y2i(u), y2i(d)), ret;
}
void set(pos_t x, pos_t y, T v) { set_<1>(x, y, v); }
void mul(pos_t x, pos_t y, T v) { set_<0>(x, y, v); }
T get(pos_t x, pos_t y) const { return val[xy2i(x, y) + id[2]]; }
};
#line 7 "test/hackerrank/grid-xor-query.Seg2D.test.cpp"
// 2次元xor
using namespace std;
struct RxorQ {
using T= int;
static T ti() { return 0; }
static T op(T l, T r) { return l ^ r; }
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using KDT= SegmentTree_2D<int, RxorQ>;
int N;
cin >> N;
vector<array<int, 3>> vec(N);
for (int i= 0; i < N; i++) {
int x, y, v;
cin >> x >> y >> v;
vec[i]= {x, y, v};
}
KDT kdt(vec);
int Q;
cin >> Q;
while (Q--) {
int a, b, c, d;
cin >> a >> b >> c >> d;
cout << kdt.prod(a, b + 1, c, d + 1) << '\n';
}
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 000 |
![]() |
5 ms | 4 MB |
g++-13 | 001 |
![]() |
267 ms | 28 MB |
g++-13 | 002 |
![]() |
267 ms | 28 MB |
g++-13 | 003 |
![]() |
270 ms | 28 MB |
g++-13 | 004 |
![]() |
116 ms | 23 MB |
g++-13 | 005 |
![]() |
63 ms | 13 MB |
g++-13 | 006 |
![]() |
24 ms | 7 MB |
g++-13 | 007 |
![]() |
54 ms | 12 MB |
g++-13 | 008 |
![]() |
57 ms | 13 MB |
g++-13 | 009 |
![]() |
41 ms | 16 MB |
g++-13 | 010 |
![]() |
60 ms | 16 MB |
g++-13 | 011 |
![]() |
109 ms | 16 MB |
clang++-18 | 000 |
![]() |
5 ms | 4 MB |
clang++-18 | 001 |
![]() |
272 ms | 28 MB |
clang++-18 | 002 |
![]() |
274 ms | 28 MB |
clang++-18 | 003 |
![]() |
268 ms | 28 MB |
clang++-18 | 004 |
![]() |
118 ms | 23 MB |
clang++-18 | 005 |
![]() |
64 ms | 13 MB |
clang++-18 | 006 |
![]() |
24 ms | 7 MB |
clang++-18 | 007 |
![]() |
54 ms | 12 MB |
clang++-18 | 008 |
![]() |
55 ms | 13 MB |
clang++-18 | 009 |
![]() |
41 ms | 16 MB |
clang++-18 | 010 |
![]() |
60 ms | 16 MB |
clang++-18 | 011 |
![]() |
110 ms | 16 MB |