This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc234/tasks/abc234_g
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#include "src/Math/ModInt.hpp"
#include "src/Misc/CartesianTree.hpp"
#include "src/DataStructure/BinaryIndexedTree_RangeAdd.hpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
int N;
cin >> N;
vector<int> A(N);
for (int i= 0; i < N; ++i) cin >> A[i];
CartesianTree ct1(A), ct2(A, false);
BinaryIndexedTree_RangeAdd<Mint> dp(N + 1);
dp.add_range(0, 1, 1);
for (int i= 0; i < N; ++i) {
auto [l1, r1]= ct1.range(i);
dp.add_range(i + 1, r1 + 1, -dp.sum(l1, i + 1) * A[i]);
auto [l2, r2]= ct2.range(i);
dp.add_range(i + 1, r2 + 1, dp.sum(l2, i + 1) * A[i]);
}
cout << dp[N] << '\n';
return 0;
}
#line 1 "test/atcoder/abc234_g.test.cpp"
// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc234/tasks/abc234_g
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
#include <iostream>
#include <vector>
#line 2 "src/Math/mod_inv.hpp"
#include <utility>
#include <type_traits>
#include <cassert>
template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {
std::make_signed_t<Uint> x= 1, y= 0, z= 0;
for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;
return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;
}
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na { // mod < 2^32
u32 mod;
constexpr MP_Na(): mod(0) {}
constexpr MP_Na(u32 m): mod(m) {}
constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
constexpr inline u32 set(u32 n) const { return n; }
constexpr inline u32 get(u32 n) const { return n; }
constexpr inline u32 norm(u32 n) const { return n; }
constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62
u_t mod;
constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
constexpr inline u_t set(u_t n) const { return mul(n, r2); }
constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
u_t iv, r2;
static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br { // 2^20 < mod <= 2^41
u64 mod;
constexpr MP_Br(): mod(0), x(0) {}
constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
static constexpr inline u64 set(u64 n) { return n; }
constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
u64 x;
constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64
u64 mod;
constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
constexpr inline u64 set(u64 n) const { return n; }
constexpr inline u64 get(u64 n) const { return n; }
constexpr inline u64 norm(u64 n) const { return n; }
constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
u8 s;
u64 d, v;
constexpr inline u64 rem(const u128 &u) const {
u128 q= (u >> 64) * v + u;
u64 r= u64(u) - (q >> 64) * d - d;
if (r > u64(q)) r+= d;
if (r >= d) r-= d;
return r;
}
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
for (u_t ret= md.set(1);; x= md.mul(x, x))
if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 3 "src/Internal/modint_traits.hpp"
namespace math_internal {
struct m_b {};
struct s_b: m_b {};
}
template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;
template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;
#line 6 "src/Math/ModInt.hpp"
namespace math_internal {
template <class MP, u64 MOD> struct SB: s_b {
protected:
static constexpr MP md= MP(MOD);
};
template <class U, class B> struct MInt: public B {
using Uint= U;
static constexpr inline auto mod() { return B::md.mod; }
constexpr MInt(): x(0) {}
template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}
constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}
constexpr MInt operator-() const { return MInt() - *this; }
#define FUNC(name, op) \
constexpr MInt name const { \
MInt ret; \
return ret.x= op, ret; \
}
FUNC(operator+(const MInt & r), B::md.plus(x, r.x))
FUNC(operator-(const MInt & r), B::md.diff(x, r.x))
FUNC(operator*(const MInt & r), B::md.mul(x, r.x))
FUNC(pow(u64 k), math_internal::pow(x, k, B::md))
#undef FUNC
constexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }
constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }
constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }
constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }
constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }
constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }
constexpr bool operator!=(const MInt &r) const { return !(*this == r); }
constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }
constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }
constexpr inline Uint val() const { return B::md.get(x); }
friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }
friend istream &operator>>(istream &is, MInt &r) {
i64 v;
return is >> v, r= MInt(v), is;
}
private:
Uint x;
};
template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD < (1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;
template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;
}
using math_internal::ModInt;
#line 3 "src/Misc/CartesianTree.hpp"
#include <array>
class CartesianTree {
std::vector<std::array<int, 2>> rg, ch;
std::vector<int> par;
int rt;
public:
template <class Vec> CartesianTree(const Vec &a, bool is_min= 1): rg(a.size()), ch(a.size(), std::array{-1, -1}), par(a.size(), -1) {
const int n= a.size();
auto comp= [&](int l, int r) { return (is_min ? a[l] < a[r] : a[l] > a[r]) || (a[l] == a[r] && l < r); };
int st[n], t= 0;
for (int i= n; i--; rg[i][1]= (t ? st[t - 1] : n), st[t++]= i)
while (t && comp(i, st[t - 1])) ch[i][1]= st[--t];
for (int i= t= 0; i < n; rg[i][0]= (t ? st[t - 1] + 1 : 0), st[t++]= i++)
while (t && comp(i, st[t - 1])) ch[i][0]= st[--t];
for (int i= 0; i < n; ++i)
for (int b= 2; b--;)
if (ch[i][b] != -1) par[ch[i][b]]= i;
for (int i= 0; i < n; ++i)
if (par[i] == -1) rt= i;
}
std::array<int, 2> children(int i) const { return ch[i]; }
int parent(int i) const { return par[i]; }
int root() const { return rt; }
// [l,r)
std::array<int, 2> range(int i) const { return rg[i]; }
};
#line 3 "src/DataStructure/BinaryIndexedTree_RangeAdd.hpp"
template <typename T> class BinaryIndexedTree_RangeAdd {
std::vector<T> dat1, dat2;
public:
BinaryIndexedTree_RangeAdd(int n): dat1(n + 1, T()), dat2(n + 1, T()) {}
void add_range(int l, int r, T w) { // add w [l,r)
int n= dat1.size();
for (int k= l + 1; k < n; k+= k & -k) dat1[k]-= w * l;
for (int k= r + 1; k < n; k+= k & -k) dat1[k]+= w * r;
for (int k= l + 1; k < n; k+= k & -k) dat2[k]+= w;
for (int k= r + 1; k < n; k+= k & -k) dat2[k]-= w;
}
T sum(int x) const { // sum [0,x)
T s= 0;
for (int k= x; k; k&= k - 1) s+= dat2[k];
s*= x;
for (int k= x; k; k&= k - 1) s+= dat1[k];
return s;
}
T sum(int l, int r) const { return sum(r) - sum(l); } // sum [l,r)
T operator[](size_t k) const { return sum(k + 1) - sum(k); }
};
#line 10 "test/atcoder/abc234_g.test.cpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
using Mint= ModInt<998244353>;
int N;
cin >> N;
vector<int> A(N);
for (int i= 0; i < N; ++i) cin >> A[i];
CartesianTree ct1(A), ct2(A, false);
BinaryIndexedTree_RangeAdd<Mint> dp(N + 1);
dp.add_range(0, 1, 1);
for (int i= 0; i < N; ++i) {
auto [l1, r1]= ct1.range(i);
dp.add_range(i + 1, r1 + 1, -dp.sum(l1, i + 1) * A[i]);
auto [l2, r2]= ct2.range(i);
dp.add_range(i + 1, r2 + 1, dp.sum(l2, i + 1) * A[i]);
}
cout << dp[N] << '\n';
return 0;
}