This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc133/tasks/abc133_f
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 256
// 永続配列(at) の verify
#include <iostream>
#include <vector>
#include "src/DataStructure/PersistentArray.hpp"
#include "src/Graph/Graph.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Graph g(N, N - 1);
vector<int> c(N - 1), d(N - 1);
for (int i= 0; i < N - 1; ++i) cin >> g[i] >> c[i] >> d[i], --g[i];
HeavyLightDecomposition hld(g, 0);
using PerArr= PersistentArray<int, 8>;
vector<PerArr> Arr1(N), Arr2(N);
vector<int> dep(N);
auto adj= g.adjacency_edge(0);
for (int i= 0; i < N; ++i) {
int v= hld.to_vertex(i), p= hld.parent(v);
for (int e: adj[v]) {
int u= g[e].to(v);
if (u == p) continue;
Arr1[u]= Arr1[v], Arr2[u]= Arr2[v];
Arr1[u][c[e]]+= 1, Arr2[u][c[e]]+= d[e];
dep[u]= dep[v] + d[e];
}
}
for (int i= 0; i < Q; i++) {
int x, y, u, v;
cin >> x >> y >> u >> v;
int lca= hld.lca(--u, --v);
cout << dep[u] + dep[v] - 2 * dep[lca] + y * (Arr1[u].get(x) + Arr1[v].get(x) - 2 * Arr1[lca].get(x)) - (Arr2[u].get(x) + Arr2[v].get(x) - 2 * Arr2[lca].get(x)) << '\n';
}
return 0;
}
#line 1 "test/atcoder/abc133_f.PerArr.test.cpp"
// competitive-verifier: IGNORE
// competitive-verifier: PROBLEM https://atcoder.jp/contests/abc133/tasks/abc133_f
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 256
// 永続配列(at) の verify
#include <iostream>
#include <vector>
#line 3 "src/DataStructure/PersistentArray.hpp"
template <class T, size_t M= 8> class PersistentArray {
struct Node {
T val;
Node *ch[M];
} *root;
T get(Node *t, size_t k) const { return t ? (k ? get(t->ch[(k - 1) % M], (k - 1) / M) : t->val) : T(); }
bool is_null(Node *t, size_t k) const { return t ? (k ? is_null(t->ch[(k - 1) % M], (k - 1) / M) : false) : true; }
template <bool persistent= true> T &at(Node *&t, size_t k) {
if (!t) t= new Node();
else if constexpr (persistent) t= new Node(*t);
return k ? at<persistent>(t->ch[(k - 1) % M], (k - 1) / M) : t->val;
}
public:
PersistentArray(): root(nullptr) {}
PersistentArray(size_t n, T v): root(nullptr) {
for (size_t i= n; i--;) at<false>(root, i)= v;
}
PersistentArray(T *bg, T *ed): root(nullptr) {
for (size_t i= ed - bg; i--;) at<false>(root, i)= *(bg + i);
}
PersistentArray(const std::vector<T> &ar): PersistentArray(ar.data(), ar.data() + ar.size()) {}
bool is_null(size_t k) const { return is_null(root, k); }
T get(size_t k) const { return get(root, k); }
T &at(size_t k) { return at<true>(root, k); }
T &operator[](size_t k) { return at(k); }
T operator[](size_t k) const { return get(k); }
};
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
using std::pair<int, int>::pair;
Edge &operator--() { return --first, --second, *this; }
int to(int v) const { return first ^ second ^ v; }
friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
size_t n;
Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
size_t vertex_size() const { return n; }
size_t edge_size() const { return size(); }
size_t add_vertex() { return n++; }
size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
for (auto [u, v]: *this) a; \
for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
for (int i= size(); i--;) { \
auto [u, v]= (*this)[i]; \
b; \
}
#define _ADJ(a, b) \
vector<int> p(n + 1), c(size() << !dir); \
if (!dir) { \
_ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
} else if (dir > 0) { \
_ADJ_FOR(++p[u], c[--p[u]]= a) \
} else { \
_ADJ_FOR(++p[v], c[--p[v]]= b) \
} \
return {c, p}
CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 2 "src/Graph/HeavyLightDecomposition.hpp"
#include <array>
#include <cassert>
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
std::vector<int> P, PP, D, I, L, R;
public:
HeavyLightDecomposition()= default;
HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
const int n= adj.size();
P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
for (P[r]= -1, I[t++]= r; i < t; ++i)
for (int u: adj[v= I[i]])
if (P[v] != u) P[I[t++]= u]= v;
};
f(root);
for (int r= 0; r < n; ++r)
if (P[r] == -2) f(r);
std::vector<int> Z(n, 1), nx(n, -1);
for (int i= n, v; i--;) {
if (P[v= I[i]] == -1) continue;
if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
}
for (int v= n; v--;) PP[v]= v;
for (int v: I)
if (nx[v] != -1) PP[nx[v]]= v;
for (int v: I)
if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
for (int i= n; i--;) L[I[i]]= i;
for (int v: I) {
int ir= R[v]= L[v] + Z[v];
for (int u: adj[v])
if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
if (nx[v] != -1) L[nx[v]]= L[v] + 1;
}
for (int i= n; i--;) I[L[i]]= i;
}
int to_seq(int v) const { return L[v]; }
int to_vertex(int i) const { return I[i]; }
size_t size() const { return P.size(); }
int parent(int v) const { return P[v]; }
int head(int v) const { return PP[v]; }
int root(int v) const {
for (v= PP[v];; v= PP[P[v]])
if (P[v] == -1) return v;
}
bool connected(int u, int v) const { return root(u) == root(v); }
// u is in v
bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
int subtree_size(int v) const { return R[v] - L[v]; }
int lca(int u, int v) const {
for (;; v= P[PP[v]]) {
if (L[u] > L[v]) std::swap(u, v);
if (PP[u] == PP[v]) return u;
}
}
int la(int v, int k) const {
assert(k <= D[v]);
for (int u;; k-= L[v] - L[u] + 1, v= P[u])
if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
}
int jump(int u, int v, int k) const {
if (!k) return u;
if (u == v) return -1;
if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
}
int depth(int v) const { return D[v]; }
int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
// half-open interval [l,r)
std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
// sequence of closed intervals [l,r]
std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
std::vector<std::pair<int, int>> up, down;
while (PP[u] != PP[v]) {
if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
}
if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
return up.insert(up.end(), down.rbegin(), down.rend()), up;
}
};
#line 12 "test/atcoder/abc133_f.PerArr.test.cpp"
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
Graph g(N, N - 1);
vector<int> c(N - 1), d(N - 1);
for (int i= 0; i < N - 1; ++i) cin >> g[i] >> c[i] >> d[i], --g[i];
HeavyLightDecomposition hld(g, 0);
using PerArr= PersistentArray<int, 8>;
vector<PerArr> Arr1(N), Arr2(N);
vector<int> dep(N);
auto adj= g.adjacency_edge(0);
for (int i= 0; i < N; ++i) {
int v= hld.to_vertex(i), p= hld.parent(v);
for (int e: adj[v]) {
int u= g[e].to(v);
if (u == p) continue;
Arr1[u]= Arr1[v], Arr2[u]= Arr2[v];
Arr1[u][c[e]]+= 1, Arr2[u][c[e]]+= d[e];
dep[u]= dep[v] + d[e];
}
}
for (int i= 0; i < Q; i++) {
int x, y, u, v;
cin >> x >> y >> u >> v;
int lca= hld.lca(--u, --v);
cout << dep[u] + dep[v] - 2 * dep[lca] + y * (Arr1[u].get(x) + Arr1[v].get(x) - 2 * Arr1[lca].get(x)) - (Arr2[u].get(x) + Arr2[v].get(x) - 2 * Arr2[lca].get(x)) << '\n';
}
return 0;
}