Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/aoj/ITP2_4_C.RBST.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/lesson/8/ITP2/all/ITP2_4_C
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// split3, operator+ の verify

#include <iostream>
#include "src/DataStructure/RandomizedBinarySearchTree.hpp"
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int n;
 cin >> n;
 int a[n];
 for (int i= 0; i < n; ++i) cin >> a[i];
 RandomizedBinarySearchTree<int> ar(a, a + n);
 int q;
 cin >> q;
 for (int i= 0; i < q; ++i) {
  int b, e, t;
  cin >> b >> e >> t;
  int f= t + e - b;
  if (t < b) swap(b, t), swap(e, f);
  auto [tl, tc, tr]= ar.split3(t, f);
  auto [bl, bc, br]= tl.split3(b, e);
  ar= bl + tc + br + bc + tr;
 }
 auto ans= ar.dump();
 for (int i= 0; i < n; ++i) cout << ans[i] << " \n"[i == n - 1];
 return 0;
}
#line 1 "test/aoj/ITP2_4_C.RBST.test.cpp"
// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/lesson/8/ITP2/all/ITP2_4_C
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// split3, operator+ の verify

#include <iostream>
#line 2 "src/DataStructure/RandomizedBinarySearchTree.hpp"
#include <vector>
#include <string>
#include <array>
#include <tuple>
#include <utility>
#include <cstddef>
#include <cassert>
#line 2 "src/Internal/detection_idiom.hpp"
#include <type_traits>
#define _DETECT_BOOL(name, ...) \
 template <class, class= void> struct name: std::false_type {}; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
 template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
 template <class T, class= void> struct name { \
  using type= type2; \
 }; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
  using type= type1; \
 }
#line 2 "src/Misc/rng.hpp"
#include <random>
#include <cstdint>
uint64_t rng() {
 static uint64_t x= 10150724397891781847ULL * std::random_device{}();
 return x^= x << 7, x^= x >> 9;
}
uint64_t rng(uint64_t lim) { return rng() % lim; }
int64_t rng(int64_t l, int64_t r) { return l + rng() % (r - l); }
#line 11 "src/DataStructure/RandomizedBinarySearchTree.hpp"
template <class M, bool reversible= false> class RandomizedBinarySearchTree {
 _DETECT_BOOL(semigroup, typename T::T, decltype(&T::op));
 _DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
 _DETECT_BOOL(commute, typename T::commute);
 _DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
 _DETECT_TYPE(myself_or_T, typename T::T, T, typename T::T);
 using T= typename myself_or_T<M>::type;
 using E= typename nullptr_or_E<M>::type;
 using RBST= RandomizedBinarySearchTree;
 template <class D> struct NodeB {
  T val;
  D *l= nullptr, *r= nullptr;
  size_t sz= 0;
 };
 template <class D, bool du> struct NodeD: NodeB<D> {};
 template <class D> struct NodeD<D, 1>: NodeB<D> {
  E laz;
 };
 template <class D, bool sg, bool rev, bool com> struct NodeS: NodeD<D, dual_v<M>> {};
 template <class D, bool rev, bool com> struct NodeS<D, 1, rev, com>: NodeD<D, dual_v<M>> {
  T sum;
 };
 template <class D> struct NodeS<D, 1, 1, 0>: NodeD<D, dual_v<M>> {
  T sum, rsum;
 };
 struct Node: NodeS<Node, semigroup_v<M>, reversible, commute_v<M>> {
  size_t size() const {
   if constexpr (dual_v<M> || reversible) return this->sz & 0x3fffffff;
   else return this->sz;
  }
 };
 using np= Node *;
 np rt;
 template <bool sz= 1> static inline void update(np t) {
  if constexpr (sz) t->sz= 1;
  if constexpr (semigroup_v<M>) {
   t->sum= t->val;
   if constexpr (reversible && !commute_v<M>) t->rsum= t->sum;
  }
  if (t->l) {
   if constexpr (sz) t->sz+= t->l->size();
   if constexpr (semigroup_v<M>) {
    t->sum= M::op(t->l->sum, t->sum);
    if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->rsum, t->l->rsum);
   }
  }
  if (t->r) {
   if constexpr (sz) t->sz+= t->r->size();
   if constexpr (semigroup_v<M>) {
    t->sum= M::op(t->sum, t->r->sum);
    if constexpr (reversible && !commute_v<M>) t->rsum= M::op(t->r->rsum, t->rsum);
   }
  }
 }
 static inline void map(T &v, E x, int sz) {
  if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) M::mp(v, x, sz);
  else M::mp(v, x);
 }
 static inline void propagate(np t, const E &x) {
  if (!t) return;
  if (t->sz >> 31) M::cp(t->laz, x);
  else t->laz= x;
  if constexpr (semigroup_v<M>) {
   map(t->sum, x, t->size());
   if constexpr (reversible && !commute_v<M>) map(t->rsum, x, t->size());
  }
  map(t->val, x, 1), t->sz|= 0x80000000;
 }
 static inline void toggle(np t) {
  if (!t) return;
  if constexpr (semigroup_v<M> && !commute_v<M>) std::swap(t->sum, t->rsum);
  std::swap(t->l, t->r), t->sz^= 0x40000000;
 }
 static inline void push_prop(np t) {
  if (t->sz >> 31) propagate(t->l, t->laz), propagate(t->r, t->laz), t->sz^= 0x80000000;
 }
 static inline void push_tog(np t) {
  if (t->sz & 0x40000000) toggle(t->l), toggle(t->r), t->sz^= 0x40000000;
 }
 template <class S> static inline np build(size_t bg, size_t ed, const S &val) {
  if (bg == ed) return nullptr;
  size_t mid= bg + (ed - bg) / 2;
  np t= new Node;
  if constexpr (std::is_same_v<S, T>) t->val= val;
  else t->val= val[mid];
  return t->l= build(bg, mid, val), t->r= build(mid + 1, ed, val), update(t), t;
 }
 static inline void dump(typename std::vector<T>::iterator itr, np t) {
  if (!t) return;
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t sz= t->l ? t->l->size() : 0;
  *(itr + sz)= t->val, dump(itr, t->l), dump(itr + sz + 1, t->r);
 }
 static inline np merge(np l, np r) {
  if (!l) return r;
  if (!r) return l;
  if (size_t lsz= l->size(), rsz= r->size(); rng(lsz + rsz) < lsz) {
   if constexpr (dual_v<M>) push_prop(l);
   if constexpr (reversible) push_tog(l);
   return l->r= merge(l->r, r), update(l), l;
  } else {
   if constexpr (dual_v<M>) push_prop(r);
   if constexpr (reversible) push_tog(r);
   return r->l= merge(l, r->l), update(r), r;
  }
 }
 static inline std::pair<np, np> split(np t, size_t k) {
  if (!t) return {nullptr, nullptr};
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  if (size_t sz= t->l ? t->l->size() : 0; k <= sz) {
   auto [l, r]= split(t->l, k);
   t->l= r, update(t);
   return {l, t};
  } else {
   auto [l, r]= split(t->r, k - sz - 1);
   t->r= l, update(t);
   return {t, r};
  }
 }
 static inline T erase(np &t, size_t k) {
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t sz= t->l ? t->l->size() : 0;
  if (k == sz) {
   T v= t->val;
   return t= merge(t->l, t->r), v;
  } else {
   T v= k < sz ? erase(t->l, k) : erase(t->r, k - sz - 1);
   return update(t), v;
  }
 }
 static inline T prod(np t, size_t a, size_t b) {
  if (!a && b == t->size()) return t->sum;
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t l= t->l ? t->l->size() : 0, k= l + 1;
  if (b < k) return prod(t->l, a, b);
  if (a > l) return prod(t->r, a - k, b - k);
  T ret= t->val;
  if (a < l) ret= M::op(prod(t->l, a, l), ret);
  if (b > k) ret= M::op(ret, prod(t->r, 0, b - k));
  return ret;
 }
 static inline void apply(np t, size_t a, size_t b, const E &x) {
  if (!a && b == t->size()) return propagate(t, x);
  if constexpr (reversible) push_tog(t);
  push_prop(t);
  size_t l= t->l ? t->l->size() : 0, k= l + 1;
  if (b < k) apply(t->l, a, b, x);
  else if (a > l) apply(t->r, a - k, b - k, x);
  else {
   map(t->val, x, 1);
   if (a < l) apply(t->l, a, l, x);
   if (b > k) apply(t->r, 0, b - k, x);
  }
  if constexpr (semigroup_v<M>) update<0>(t);
 }
 static inline void set_val(np t, size_t k, const T &v) {
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t l= t->l ? t->l->size() : 0;
  if (k < l) set_val(t->l, k, v);
  else if (k > l) set_val(t->r, k - l - 1, v);
  else t->val= v;
  if constexpr (semigroup_v<M>) update<0>(t);
 }
 static inline void mul_val(np t, size_t k, const T &v) {
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t l= t->l ? t->l->size() : 0;
  if (k < l) mul_val(t->l, k, v);
  else if (k > l) mul_val(t->r, k - l - 1, v);
  else t->val= M::op(t->val, v);
  update<0>(t);
 }
 static inline T get_val(np t, size_t k) {
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t l= t->l ? t->l->size() : 0;
  if (k < l) return get_val(t->l, k);
  if (k > l) return get_val(t->r, k - l - 1);
  return t->val;
 }
 static inline T &at_val(np t, size_t k) {
  if constexpr (dual_v<M>) push_prop(t);
  if constexpr (reversible) push_tog(t);
  size_t l= t->l ? t->l->size() : 0;
  if (k < l) return at_val(t->l, k);
  if (k > l) return at_val(t->r, k - l - 1);
  return t->val;
 }
 static inline RBST np_to_rbst(np t) {
  RBST ret;
  return ret.rt= t, ret;
 }
public:
 RandomizedBinarySearchTree(): rt(nullptr) {}
 RandomizedBinarySearchTree(size_t n, T val= T()): rt(n ? build(0, n, val) : nullptr) {}
 RandomizedBinarySearchTree(const T *bg, const T *ed): rt(bg == ed ? nullptr : build(0, ed - bg, bg)) {}
 RandomizedBinarySearchTree(const std::vector<T> &ar): RandomizedBinarySearchTree(ar.data(), ar.data() + ar.size()) {}
 size_t size() const { return rt ? rt->size() : 0; }
 void clear() { rt= nullptr; }
 std::vector<T> dump() {
  if (!rt) return std::vector<T>();
  std::vector<T> ret(size());
  return dump(ret.begin(), rt), ret;
 }
 static std::string which_unavailable() {
  std::string ret= "";
  if constexpr (semigroup_v<M>) ret+= "\"at\" ";
  else ret+= "\"prod\" ";
  if constexpr (!semigroup_v<M> || !commute_v<M>) ret+= "\"mul\" ";
  if constexpr (!dual_v<M>) ret+= "\"apply\" ";
  if constexpr (!reversible) ret+= "\"reverse\" ";
  return ret;
 }
 RBST &operator+=(RBST r) { return rt= merge(rt, r.rt), *this; }
 RBST operator+(RBST r) const { return RBST(*this)+= r; }
 std::pair<RBST, RBST> split(size_t k) {
  assert(k <= size());
  auto [l, r]= split(rt, k);
  return {np_to_rbst(l), np_to_rbst(r)};
 }
 std::tuple<RBST, RBST, RBST> split3(size_t a, size_t b) {
  assert(a < b), assert(b <= size());
  auto [tmp, r]= split(rt, b);
  auto [l, c]= split(tmp, a);
  return {np_to_rbst(l), np_to_rbst(c), np_to_rbst(r)};
 }
 void push_back(const T &v) {
  np t= new Node;
  t->val= v, update(t), rt= merge(rt, t);
 }
 void push_front(const T &v) {
  np t= new Node;
  t->val= v, update(t), rt= merge(t, rt);
 }
 void insert(size_t k, const T &v) {
  auto [l, r]= split(rt, k);
  rt= new Node, rt->val= v, update(rt), rt= merge(merge(l, rt), r);
 }
 T pop_back() {
  auto [l, t]= split(rt, size() - 1);
  return rt= l, t->val;
 }
 T pop_front() {
  auto [t, r]= split(rt, 1);
  return rt= r, t->val;
 }
 T erase(size_t k) { return assert(k < size()), erase(rt, k); }
 void set(size_t k, const T &val) { set_val(rt, k, val); }
 void mul(size_t k, const T &val) {
  static_assert(semigroup_v<M> && commute_v<M>, "\"mul\" is not available\n");
  mul_val(rt, k, val);
 }
 T get(size_t k) { return get_val(rt, k); }
 T &at(size_t k) {
  static_assert(!semigroup_v<M>, "\"at\" is not available\n");
  return at_val(rt, k);
 }
 template <class L= M> std::enable_if_t<semigroup_v<L>, T> operator[](size_t k) { return get(k); }
 template <class L= M> std::enable_if_t<!semigroup_v<L>, T> &operator[](size_t k) { return at(k); }
 T prod(size_t a, size_t b) {
  static_assert(semigroup_v<M>, "\"prod\" is not available\n");
  return prod(rt, a, b);
 }
 void apply(size_t a, size_t b, E x) {
  static_assert(dual_v<M>, "\"apply\" is not available\n");
  apply(rt, a, b, x);
 }
 void reverse() {
  static_assert(reversible, "\"reverse\" is not available\n");
  toggle(rt);
 }
 void reverse(size_t a, size_t b) {
  static_assert(reversible, "\"reverse\" is not available\n");
  assert(a < b), assert(b <= size());
  auto [tmp, r]= split(rt, b);
  auto [l, c]= split(tmp, a);
  toggle(c), rt= merge(merge(l, c), r);
 }
};
#line 8 "test/aoj/ITP2_4_C.RBST.test.cpp"
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int n;
 cin >> n;
 int a[n];
 for (int i= 0; i < n; ++i) cin >> a[i];
 RandomizedBinarySearchTree<int> ar(a, a + n);
 int q;
 cin >> q;
 for (int i= 0; i < q; ++i) {
  int b, e, t;
  cin >> b >> e >> t;
  int f= t + e - b;
  if (t < b) swap(b, t), swap(e, f);
  auto [tl, tc, tr]= ar.split3(t, f);
  auto [bl, bc, br]= tl.split3(b, e);
  ar= bl + tc + br + bc + tr;
 }
 auto ans= ar.dump();
 for (int i= 0; i < n; ++i) cout << ans[i] << " \n"[i == n - 1];
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 00_sample_00.in :heavy_check_mark: AC 5 ms 4 MB
g++-13 01_small_00.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 02_corner_00.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 02_corner_01.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 02_corner_02.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 02_corner_03.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 03_rand_00.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 03_rand_01.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 04_maximum_00.in :heavy_check_mark: AC 4 ms 4 MB
g++-13 04_maximum_01.in :heavy_check_mark: AC 6 ms 4 MB
clang++-18 00_sample_00.in :heavy_check_mark: AC 5 ms 4 MB
clang++-18 01_small_00.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 02_corner_00.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 02_corner_01.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 02_corner_02.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 02_corner_03.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 03_rand_00.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 03_rand_01.in :heavy_check_mark: AC 4 ms 4 MB
clang++-18 04_maximum_00.in :heavy_check_mark: AC 5 ms 4 MB
clang++-18 04_maximum_01.in :heavy_check_mark: AC 6 ms 4 MB
Back to top page