This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_B
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// 重み付き
// 最小全域有向木(グラフ+分割)
#include <iostream>
#include <vector>
#include "src/Optimization/matroid_intersection.hpp"
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, M, r;
cin >> N >> M >> r;
GraphicMatroid M1(N);
vector<int> w(M);
vector<vector<int>> parts(N);
for (int i= 0; i < M; i++) {
int s, t;
cin >> s >> t >> w[i];
M1.add_edge(s, t);
parts[t].push_back(i);
}
vector<int> R(N, 1);
R[r]= 0;
PartitionMatroid M2(M, parts, R);
auto S= weighted_matroid_intersection<MINIMIZE>(M, M1, M2, w);
int ans= 0;
for (int e: S[N - 1]) ans+= w[e];
cout << ans << '\n';
return 0;
}
#line 1 "test/aoj/GRL_2_B.weighted_matroid_intersection.test.cpp"
// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_B
// competitive-verifier: TLE 0.5
// competitive-verifier: MLE 64
// 重み付き
// 最小全域有向木(グラフ+分割)
#include <iostream>
#include <vector>
#line 3 "src/Optimization/matroid_intersection.hpp"
#include <algorithm>
#include <limits>
#include <array>
#include <queue>
#include <cassert>
#line 2 "src/Optimization/MinMaxEnum.hpp"
enum MinMaxEnum { MAXIMIZE= -1, MINIMIZE= 1 };
#line 9 "src/Optimization/matroid_intersection.hpp"
template <typename Matroid1, typename Matroid2> std::vector<int> matroid_intersection(int n, Matroid1 M1, Matroid2 M2) {
std::vector<int> b(n, false), pre(n), I[2];
for (int e= 0; e < n; e++) I[0].push_back(e);
M1.build(I[1]), M2.build(I[1]);
for (bool converged= false; !converged;) {
pre.assign(n, false);
std::vector L(1, std::vector<int>());
for (int u: I[0])
if (M1.oracle(u)) pre[u]= true, L[0].push_back(u);
int m= 0;
for (; L.back().size(); m+= 2) {
L.push_back({});
for (int e: L[m]) {
if (converged= M2.oracle(e)) break;
for (int f: I[1])
if (!pre[f] && M2.oracle(f, e)) L[m + 1].push_back(f), pre[f]= true;
}
if (converged) break;
L.push_back({});
for (int e: L[m + 1])
for (int f: I[0])
if (!pre[f] && M1.oracle(e, f)) L[m + 2].push_back(f), pre[f]= true;
}
if (!converged) break;
std::vector<std::vector<int>> L2(m + 1);
for (int e: L[m])
if (M2.oracle(e)) L2[m].push_back(e);
for (int i= m; i; i-= 2) {
for (int e: L[i - 1])
for (int f: L2[i])
if (M1.oracle(e, f)) {
L2[i - 1].push_back(e);
break;
}
for (int e: L[i - 2])
for (int f: L2[i - 1])
if (M2.oracle(f, e)) {
L2[i - 2].push_back(e);
break;
}
}
pre.assign(n, -1);
for (int e: L2[0])
if (M1.oracle(e)) {
bool isok= false;
if (m) {
std::vector<size_t> ei(m);
for (int i= 0; e != -1;) {
if (ei[i] == L2[i + 1].size()) e= pre[e], ei[i--]= 0;
else if (int f= L2[i + 1][ei[i]++]; pre[f] == -1 && (i & 1 ? M1.oracle(e, f) : M2.oracle(f, e)))
if (pre[f]= e, e= f; ++i == m) {
if (M2.oracle(e))
for (isok= true; e != -1; e= pre[e]) b[e]= !b[e];
else e= pre[e], --i;
}
}
} else if (M2.oracle(e)) isok= true, b[e]= 1;
if (isok) {
converged= false, I[0].clear(), I[1].clear();
for (int u= 0; u < n; u++) I[b[u]].push_back(u);
M1.build(I[1]), M2.build(I[1]);
}
}
}
return I[1];
}
template <MinMaxEnum sgn, class Matroid1, class Matroid2, class cost_t> std::vector<std::vector<int>> weighted_matroid_intersection(int n, Matroid1 M1, Matroid2 M2, std::vector<cost_t> c) {
assert(n == (int)c.size());
bool b[n];
std::fill_n(b, n, false);
std::vector<int> I[2], p;
std::vector<std::vector<int>> ret(1);
for (int u= 0; u < n; u++) I[0].push_back(u);
if constexpr (sgn == MAXIMIZE) {
auto cmx= *std::max_element(c.begin(), c.end());
for (auto &x: c) x-= cmx;
} else {
auto cmi= *std::min_element(c.begin(), c.end());
for (auto &x: c) x-= cmi;
}
for (auto &x: c) x*= -sgn * (n + 1);
for (bool converged= false; !converged;) {
converged= true, M1.build(I[1]), M2.build(I[1]);
std::priority_queue<std::pair<cost_t, int>> pq;
std::vector<cost_t> dist(n, std::numeric_limits<cost_t>::lowest());
for (int u: I[0])
if (M1.oracle(u)) pq.emplace(dist[u]= c[u] - 1, u);
for (p.assign(n, -1); pq.size();) {
auto [d, u]= pq.top();
if (pq.pop(); d != dist[u]) continue;
if (b[u]) {
for (int v: I[0])
if (M1.oracle(u, v))
if (cost_t cost= d + c[v] - 1; dist[v] < cost) pq.emplace(dist[v]= cost, v), p[v]= u;
} else {
if (M2.oracle(u)) {
for (int v= u; v != -1; v= p[v]) b[v]= !b[v];
I[0].clear(), I[1].clear(), converged= false;
for (int u= 0; u < n; u++) I[b[u]].push_back(u);
ret.emplace_back(I[1]);
break;
}
for (int v: I[1])
if (M2.oracle(v, u))
if (cost_t cost= d - c[v] - 1; dist[v] < cost) pq.emplace(dist[v]= cost, v), p[v]= u;
}
}
}
return ret;
}
class GraphicMatroid {
int n;
std::vector<std::array<int, 2>> es;
std::vector<int> g, pos, comp, in, out;
inline bool is_ancestor(int u, int v) const { return in[u] <= in[v] && in[v] < out[u]; }
public:
GraphicMatroid(int n_): n(n_), comp(n), in(n), out(n) {}
int add_edge(int u, int v) { return es.push_back({u, v}), es.size() - 1; }
void build(const std::vector<int> &I) {
in.assign(n, -1), g.resize(I.size() * 2), pos.assign(n + 1, 0);
for (int e: I) {
auto [u, v]= es[e];
++pos[u], ++pos[v];
}
for (int i= 0; i < n; ++i) pos[i + 1]+= pos[i];
for (int e: I) {
auto [u, v]= es[e];
g[--pos[u]]= v, g[--pos[v]]= u;
}
std::vector<int> ei(pos.begin(), pos.begin() + n), pre(n, -1);
for (int u= 0, t= 0, p; u < n; u++)
if (in[u] == -1)
for (in [comp[u]= p= u]= t++; p >= 0;) {
if (ei[p] == pos[p + 1]) out[p]= t, p= pre[p];
else if (int v= g[ei[p]++]; in[v] == -1) comp[v]= comp[u], pre[v]= p, in[p= v]= t++;
}
}
inline bool oracle(int e) const { return comp[es[e][0]] != comp[es[e][1]]; }
inline bool oracle(int e, int f) const {
if (oracle(f)) return true;
return e= es[e][in[es[e][0]] < in[es[e][1]]], is_ancestor(e, es[f][0]) != is_ancestor(e, es[f][1]);
}
};
struct PartitionMatroid {
std::vector<int> belong, R, cnt;
PartitionMatroid(int m_, const std::vector<std::vector<int>> &parts, const std::vector<int> &R_): belong(m_, -1), R(R_) {
assert(parts.size() == R.size());
for (int i= parts.size(); i--;)
for (int e: parts[i]) belong[e]= i;
}
void build(const std::vector<int> &I) {
cnt= R;
for (int e: I)
if (belong[e] != -1) cnt[belong[e]]--;
}
inline bool oracle(int e) const { return belong[e] == -1 || cnt[belong[e]] > 0; }
inline bool oracle(int e, int f) const { return oracle(f) || belong[e] == belong[f]; }
};
#line 9 "test/aoj/GRL_2_B.weighted_matroid_intersection.test.cpp"
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, M, r;
cin >> N >> M >> r;
GraphicMatroid M1(N);
vector<int> w(M);
vector<vector<int>> parts(N);
for (int i= 0; i < M; i++) {
int s, t;
cin >> s >> t >> w[i];
M1.add_edge(s, t);
parts[t].push_back(i);
}
vector<int> R(N, 1);
R[r]= 0;
PartitionMatroid M2(M, parts, R);
auto S= weighted_matroid_intersection<MINIMIZE>(M, M1, M2, w);
int ans= 0;
for (int e: S[N - 1]) ans+= w[e];
cout << ans << '\n';
return 0;
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-13 | 00_sample_00.in |
![]() |
5 ms | 4 MB |
g++-13 | 00_sample_01.in |
![]() |
4 ms | 4 MB |
g++-13 | critical1.in |
![]() |
4 ms | 4 MB |
g++-13 | critical2.in |
![]() |
5 ms | 4 MB |
g++-13 | critical3.in |
![]() |
4 ms | 4 MB |
g++-13 | critical4.in |
![]() |
4 ms | 4 MB |
g++-13 | critical5.in |
![]() |
4 ms | 4 MB |
g++-13 | critical6.in |
![]() |
4 ms | 3 MB |
g++-13 | critical7.in |
![]() |
4 ms | 4 MB |
g++-13 | critical8.in |
![]() |
4 ms | 4 MB |
g++-13 | out1.in |
![]() |
4 ms | 4 MB |
g++-13 | out10.in |
![]() |
17 ms | 4 MB |
g++-13 | out11.in |
![]() |
16 ms | 4 MB |
g++-13 | out12.in |
![]() |
16 ms | 4 MB |
g++-13 | out13.in |
![]() |
19 ms | 4 MB |
g++-13 | out14.in |
![]() |
15 ms | 4 MB |
g++-13 | out15.in |
![]() |
16 ms | 4 MB |
g++-13 | out2.in |
![]() |
4 ms | 4 MB |
g++-13 | out3.in |
![]() |
4 ms | 4 MB |
g++-13 | out4.in |
![]() |
4 ms | 4 MB |
g++-13 | out5.in |
![]() |
4 ms | 4 MB |
g++-13 | out6.in |
![]() |
20 ms | 4 MB |
g++-13 | out7.in |
![]() |
18 ms | 4 MB |
g++-13 | out8.in |
![]() |
18 ms | 4 MB |
g++-13 | out9.in |
![]() |
17 ms | 4 MB |
clang++-18 | 00_sample_00.in |
![]() |
5 ms | 4 MB |
clang++-18 | 00_sample_01.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical1.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical2.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical3.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical4.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical5.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical6.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical7.in |
![]() |
4 ms | 4 MB |
clang++-18 | critical8.in |
![]() |
4 ms | 4 MB |
clang++-18 | out1.in |
![]() |
4 ms | 4 MB |
clang++-18 | out10.in |
![]() |
17 ms | 4 MB |
clang++-18 | out11.in |
![]() |
16 ms | 4 MB |
clang++-18 | out12.in |
![]() |
16 ms | 4 MB |
clang++-18 | out13.in |
![]() |
20 ms | 4 MB |
clang++-18 | out14.in |
![]() |
16 ms | 4 MB |
clang++-18 | out15.in |
![]() |
17 ms | 4 MB |
clang++-18 | out2.in |
![]() |
4 ms | 4 MB |
clang++-18 | out3.in |
![]() |
4 ms | 4 MB |
clang++-18 | out4.in |
![]() |
4 ms | 4 MB |
clang++-18 | out5.in |
![]() |
4 ms | 4 MB |
clang++-18 | out6.in |
![]() |
21 ms | 4 MB |
clang++-18 | out7.in |
![]() |
19 ms | 4 MB |
clang++-18 | out8.in |
![]() |
19 ms | 4 MB |
clang++-18 | out9.in |
![]() |
18 ms | 4 MB |