Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/aoj/2450.HLD.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/challenges/sources/JAG/Summer/2450
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// Do use segment tree
#include <iostream>
#include <algorithm>
#include "src/Graph/Graph.hpp"
#include "src/Graph/HeavyLightDecomposition.hpp"
#include "src/DataStructure/SegmentTree.hpp"
using namespace std;
struct M {
 struct T {
  long long sum, max, lmax, rmax;
 };
 using E= long long;
 static inline long long INF= 1ll << 60;
 static T ti() { return {0, -INF, -INF, -INF}; }
 static T op(const T &a, const T &b) {
  T ret;
  ret.sum= a.sum + b.sum;
  ret.max= max({a.max, b.max, a.rmax + b.lmax});
  ret.lmax= max(a.lmax, a.sum + b.lmax);
  ret.rmax= max(a.rmax + b.sum, b.rmax);
  return ret;
 }
 static void mp(T &v, const E &f, int sz) {
  v.sum= f * sz;
  v.max= v.lmax= v.rmax= max(v.sum, f);
 }
 static void cp(E &pre, const E &suf) { pre= suf; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 vector<long long> w(N);
 for (int u= 0; u < N; ++u) cin >> w[u];
 Graph g(N, N - 1);
 for (int i= 0; i < N - 1; ++i) cin >> g[i], --g[i];
 HeavyLightDecomposition hld(g);
 vector<typename M::T> ar(N);
 for (int u= N; u--;) ar[hld.to_seq(u)]= {w[u], w[u], w[u], w[u]};
 SegmentTree<M> seg1(ar);
 reverse(ar.begin(), ar.end());
 SegmentTree<M> seg2(ar);
 while (Q--) {
  long long t, a, b, c;
  cin >> t >> a >> b >> c, --a, --b;
  if (t == 1) {
   for (auto [x, y]: hld.path(a, b))
    if (x < y) seg1.apply(x, y + 1, c), seg2.apply(N - y - 1, N - x, c);
    else seg1.apply(y, x + 1, c), seg2.apply(N - x - 1, N - y, c);
  } else {
   typename M::T ans= M::ti();
   for (auto [x, y]: hld.path(a, b)) ans= M::op(ans, x < y ? seg1.prod(x, y + 1) : seg2.prod(N - x - 1, N - y));
   cout << ans.max << '\n';
  }
 }
 return 0;
}
#line 1 "test/aoj/2450.HLD.test.cpp"
// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/challenges/sources/JAG/Summer/2450
// competitive-verifier: TLE 1
// competitive-verifier: MLE 64
// Do use segment tree
#include <iostream>
#include <algorithm>
#line 2 "src/Internal/ListRange.hpp"
#include <vector>
#line 4 "src/Internal/ListRange.hpp"
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
 template <class T> struct name { \
  using Iterator= typename std::vector<T>::IT; \
  Iterator bg, ed; \
  Iterator begin() const { return bg; } \
  Iterator end() const { return ed; } \
  size_t size() const { return std::distance(bg, ed); } \
  CT &operator[](int i) const { return bg[i]; } \
 }
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
 std::vector<T> dat;
 std::vector<int> p;
 size_t size() const { return p.size() - 1; }
 ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
 ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
 os << '[';
 for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
 return os << ']';
}
#line 3 "src/Graph/Graph.hpp"
struct Edge: std::pair<int, int> {
 using std::pair<int, int>::pair;
 Edge &operator--() { return --first, --second, *this; }
 int to(int v) const { return first ^ second ^ v; }
 friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
 size_t n;
 Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
 size_t vertex_size() const { return n; }
 size_t edge_size() const { return size(); }
 size_t add_vertex() { return n++; }
 size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
 size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
 for (auto [u, v]: *this) a; \
 for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
 for (int i= size(); i--;) { \
  auto [u, v]= (*this)[i]; \
  b; \
 }
#define _ADJ(a, b) \
 vector<int> p(n + 1), c(size() << !dir); \
 if (!dir) { \
  _ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
 } else if (dir > 0) { \
  _ADJ_FOR(++p[u], c[--p[u]]= a) \
 } else { \
  _ADJ_FOR(++p[v], c[--p[v]]= b) \
 } \
 return {c, p}
 CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
 CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
#line 2 "src/Graph/HeavyLightDecomposition.hpp"
#include <array>
#include <cassert>
#line 5 "src/Graph/HeavyLightDecomposition.hpp"
class HeavyLightDecomposition {
 std::vector<int> P, PP, D, I, L, R;
public:
 HeavyLightDecomposition()= default;
 HeavyLightDecomposition(const Graph &g, int root= 0): HeavyLightDecomposition(g.adjacency_vertex(0), root) {}
 HeavyLightDecomposition(const CSRArray<int> &adj, int root= 0) {
  const int n= adj.size();
  P.assign(n, -2), PP.resize(n), D.resize(n), I.resize(n), L.resize(n), R.resize(n);
  auto f= [&, i= 0, v= 0, t= 0](int r) mutable {
   for (P[r]= -1, I[t++]= r; i < t; ++i)
    for (int u: adj[v= I[i]])
     if (P[v] != u) P[I[t++]= u]= v;
  };
  f(root);
  for (int r= 0; r < n; ++r)
   if (P[r] == -2) f(r);
  std::vector<int> Z(n, 1), nx(n, -1);
  for (int i= n, v; i--;) {
   if (P[v= I[i]] == -1) continue;
   if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v;
   if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v;
  }
  for (int v= n; v--;) PP[v]= v;
  for (int v: I)
   if (nx[v] != -1) PP[nx[v]]= v;
  for (int v: I)
   if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1;
  for (int i= n; i--;) L[I[i]]= i;
  for (int v: I) {
   int ir= R[v]= L[v] + Z[v];
   for (int u: adj[v])
    if (u != P[v] && u != nx[v]) L[u]= (ir-= Z[u]);
   if (nx[v] != -1) L[nx[v]]= L[v] + 1;
  }
  for (int i= n; i--;) I[L[i]]= i;
 }
 int to_seq(int v) const { return L[v]; }
 int to_vertex(int i) const { return I[i]; }
 size_t size() const { return P.size(); }
 int parent(int v) const { return P[v]; }
 int head(int v) const { return PP[v]; }
 int root(int v) const {
  for (v= PP[v];; v= PP[P[v]])
   if (P[v] == -1) return v;
 }
 bool connected(int u, int v) const { return root(u) == root(v); }
 // u is in v
 bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; }
 int subtree_size(int v) const { return R[v] - L[v]; }
 int lca(int u, int v) const {
  for (;; v= P[PP[v]]) {
   if (L[u] > L[v]) std::swap(u, v);
   if (PP[u] == PP[v]) return u;
  }
 }
 int la(int v, int k) const {
  assert(k <= D[v]);
  for (int u;; k-= L[v] - L[u] + 1, v= P[u])
   if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k];
 }
 int jump(int u, int v, int k) const {
  if (!k) return u;
  if (u == v) return -1;
  if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u];
  int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w];
  return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k);
 }
 int depth(int v) const { return D[v]; }
 int dist(int u, int v) const { return D[u] + D[v] - D[lca(u, v)] * 2; }
 // half-open interval [l,r)
 std::pair<int, int> subtree(int v) const { return {L[v], R[v]}; }
 // sequence of closed intervals [l,r]
 std::vector<std::pair<int, int>> path(int u, int v, bool edge= 0) const {
  std::vector<std::pair<int, int>> up, down;
  while (PP[u] != PP[v]) {
   if (L[u] < L[v]) down.emplace_back(L[PP[v]], L[v]), v= P[PP[v]];
   else up.emplace_back(L[u], L[PP[u]]), u= P[PP[u]];
  }
  if (L[u] < L[v]) down.emplace_back(L[u] + edge, L[v]);
  else if (L[v] + edge <= L[u]) up.emplace_back(L[u], L[v] + edge);
  return up.insert(up.end(), down.rbegin(), down.rend()), up;
 }
};
#line 2 "src/DataStructure/SegmentTree.hpp"
#include <memory>
#line 3 "src/Internal/detection_idiom.hpp"
#define _DETECT_BOOL(name, ...) \
 template <class, class= void> struct name: std::false_type {}; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>>: std::true_type {}; \
 template <class T> static constexpr bool name##_v= name<T>::value
#define _DETECT_TYPE(name, type1, type2, ...) \
 template <class T, class= void> struct name { \
  using type= type2; \
 }; \
 template <class T> struct name<T, std::void_t<__VA_ARGS__>> { \
  using type= type1; \
 }
#line 7 "src/DataStructure/SegmentTree.hpp"
template <class M> class SegmentTree {
 _DETECT_BOOL(monoid, typename T::T, decltype(&T::op), decltype(&T::ti));
 _DETECT_BOOL(dual, typename T::T, typename T::E, decltype(&T::mp), decltype(&T::cp));
 _DETECT_TYPE(nullptr_or_E, typename T::E, std::nullptr_t, typename T::E);
 using T= typename M::T;
 using E= typename nullptr_or_E<M>::type;
 int n;
 std::unique_ptr<T[]> dat;
 std::unique_ptr<E[]> laz;
 std::unique_ptr<bool[]> flg;
 inline void update(int k) { dat[k]= M::op(dat[k << 1], dat[k << 1 | 1]); }
 inline bool map(int k, E x, int sz) {
  if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz);
  else if constexpr (std::is_invocable_r_v<bool, decltype(M::mp), T &, E>) return M::mp(dat[k], x);
  else if constexpr (std::is_invocable_r_v<void, decltype(M::mp), T &, E, int>) return M::mp(dat[k], x, sz), true;
  else return M::mp(dat[k], x), true;
 }
 inline void prop(int k, E x, int sz) {
  if (k < n) {
   if (flg[k]) M::cp(laz[k], x);
   else laz[k]= x;
   flg[k]= true;
   if constexpr (monoid_v<M>)
    if (!map(k, x, sz)) push(k, sz), update(k);
  } else {
   if constexpr (monoid_v<M>) map(k, x, 1);
   else map(k - n, x, 1);
  }
 }
 inline void push(int k, int sz) {
  if (flg[k]) prop(k << 1, laz[k], sz >> 1), prop(k << 1 | 1, laz[k], sz >> 1), flg[k]= false;
 }
 inline bool valid(int k) const {
  int d= __builtin_clz(k) - __builtin_clz(n);
  return (n >> d) != k || ((n >> d) << d) == n;
 }
public:
 SegmentTree() {}
 SegmentTree(int n): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
  if constexpr (monoid_v<M>) std::fill_n(dat.get(), n << 1, M::ti());
  if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
 }
 template <class F> SegmentTree(int n, const F &init): n(n), dat(std::make_unique<T[]>(n << monoid_v<M>)) {
  auto a= dat.get() + (n & -monoid_v<M>);
  for (int i= 0; i < n; ++i) a[i]= init(i);
  if constexpr (monoid_v<M>) build();
  if constexpr (dual_v<M>) laz= std::make_unique<E[]>(n), flg= std::make_unique<bool[]>(n), std::fill_n(flg.get(), n, false);
 }
 SegmentTree(int n, T x): SegmentTree(n, [x](int) { return x; }) {}
 SegmentTree(const std::vector<T> &v): SegmentTree(v.size(), [&v](int i) { return v[i]; }) {}
 SegmentTree(const T *bg, const T *ed): SegmentTree(ed - bg, [bg](int i) { return bg[i]; }) {}
 void build() {
  static_assert(monoid_v<M>, "\"build\" is not available\n");
  for (int i= n; --i;) update(i);
 }
 inline void unsafe_set(int i, T x) {
  static_assert(monoid_v<M>, "\"unsafe_set\" is not available\n");
  dat[i + n]= x;
 }
 inline void set(int i, T x) {
  get(i);
  if constexpr (monoid_v<M>)
   for (dat[i+= n]= x; i>>= 1;) update(i);
  else dat[i]= x;
 }
 inline void mul(int i, T x) {
  static_assert(monoid_v<M>, "\"mul\" is not available\n");
  set(i, M::op(get(i), x));
 }
 inline T get(int i) {
  i+= n;
  if constexpr (dual_v<M>)
   for (int j= 31 - __builtin_clz(i); j; --j) push(i >> j, 1 << j);
  if constexpr (monoid_v<M>) return dat[i];
  else return dat[i - n];
 }
 inline T operator[](int i) { return get(i); }
 inline T prod(int l, int r) {
  static_assert(monoid_v<M>, "\"prod\" is not available\n");
  l+= n, r+= n;
  if constexpr (dual_v<M>) {
   for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; --j) push(l >> j, 1 << j);
   for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; --j) push(r >> j, 1 << j);
  }
  T s1= M::ti(), s2= M::ti();
  for (; l < r; l>>= 1, r>>= 1) {
   if (l & 1) s1= M::op(s1, dat[l++]);
   if (r & 1) s2= M::op(dat[--r], s2);
  }
  return M::op(s1, s2);
 }
 inline void apply(int l, int r, E x) {
  static_assert(dual_v<M>, "\"apply\" is not available\n");
  l+= n, r+= n;
  for (int j= 31 - __builtin_clz(l); ((l >> j) << j) != l; j--) push(l >> j, 1 << j);
  for (int j= 31 - __builtin_clz(r); ((r >> j) << j) != r; j--) push(r >> j, 1 << j);
  for (int a= l, b= r, sz= 1; a < b; a>>= 1, b>>= 1, sz<<= 1) {
   if (a & 1) prop(a++, x, sz);
   if (b & 1) prop(--b, x, sz);
  }
  if constexpr (monoid_v<M>) {
   for (int j= __builtin_ctz(l) + 1; l >> j; ++j) update(l >> j);
   for (int j= __builtin_ctz(r) + 1; r >> j; ++j) update(r >> j);
  }
 }
 template <class C> int max_right(int l, const C &check) {
  static_assert(monoid_v<M>, "\"max_right\" is not available\n");
  assert(check(M::ti()));
  if (check(prod(l, n))) return n;
  T s= M::ti(), t;
  int sz= 1;
  for (get(l), l+= n;; s= t, ++l) {
   while (!(l & 1) && valid(l >> 1)) l>>= 1, sz<<= 1;
   if (!check(t= M::op(s, dat[l]))) {
    while (l < n) {
     if constexpr (dual_v<M>) push(l, sz);
     l<<= 1, sz>>= 1;
     if (check(t= M::op(s, dat[l]))) s= t, ++l;
    }
    return l - n;
   }
  }
 }
 template <class C> int min_left(int r, const C &check) {
  static_assert(monoid_v<M>, "\"min_left\" is not available\n");
  assert(check(M::ti()));
  if (check(prod(0, r))) return 0;
  T s= M::ti(), t;
  int sz= 1;
  for (get(--r), r+= n;; s= t, --r) {
   while (!valid(r)) r= r << 1 | 1, sz>>= 1;
   while ((r & 1) && valid(r >> 1)) r>>= 1, sz<<= 1;
   if (!check(t= M::op(dat[r], s))) {
    while (r < n) {
     if constexpr (dual_v<M>) push(r, sz);
     r= r << 1 | 1, sz>>= 1;
     if (check(t= M::op(dat[r], s))) s= t, --r;
    }
    return r + 1 - n;
   }
  }
 }
};
#line 10 "test/aoj/2450.HLD.test.cpp"
using namespace std;
struct M {
 struct T {
  long long sum, max, lmax, rmax;
 };
 using E= long long;
 static inline long long INF= 1ll << 60;
 static T ti() { return {0, -INF, -INF, -INF}; }
 static T op(const T &a, const T &b) {
  T ret;
  ret.sum= a.sum + b.sum;
  ret.max= max({a.max, b.max, a.rmax + b.lmax});
  ret.lmax= max(a.lmax, a.sum + b.lmax);
  ret.rmax= max(a.rmax + b.sum, b.rmax);
  return ret;
 }
 static void mp(T &v, const E &f, int sz) {
  v.sum= f * sz;
  v.max= v.lmax= v.rmax= max(v.sum, f);
 }
 static void cp(E &pre, const E &suf) { pre= suf; }
};
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, Q;
 cin >> N >> Q;
 vector<long long> w(N);
 for (int u= 0; u < N; ++u) cin >> w[u];
 Graph g(N, N - 1);
 for (int i= 0; i < N - 1; ++i) cin >> g[i], --g[i];
 HeavyLightDecomposition hld(g);
 vector<typename M::T> ar(N);
 for (int u= N; u--;) ar[hld.to_seq(u)]= {w[u], w[u], w[u], w[u]};
 SegmentTree<M> seg1(ar);
 reverse(ar.begin(), ar.end());
 SegmentTree<M> seg2(ar);
 while (Q--) {
  long long t, a, b, c;
  cin >> t >> a >> b >> c, --a, --b;
  if (t == 1) {
   for (auto [x, y]: hld.path(a, b))
    if (x < y) seg1.apply(x, y + 1, c), seg2.apply(N - y - 1, N - x, c);
    else seg1.apply(y, x + 1, c), seg2.apply(N - x - 1, N - y, c);
  } else {
   typename M::T ans= M::ti();
   for (auto [x, y]: hld.path(a, b)) ans= M::op(ans, x < y ? seg1.prod(x, y + 1) : seg2.prod(N - x - 1, N - y));
   cout << ans.max << '\n';
  }
 }
 return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-13 testcase_00 :heavy_check_mark: AC 6 ms 4 MB
g++-13 testcase_01 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_02 :heavy_check_mark: AC 5 ms 3 MB
g++-13 testcase_03 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_04 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_05 :heavy_check_mark: AC 98 ms 8 MB
g++-13 testcase_06 :heavy_check_mark: AC 139 ms 25 MB
g++-13 testcase_07 :heavy_check_mark: AC 170 ms 46 MB
g++-13 testcase_08 :heavy_check_mark: AC 6 ms 4 MB
g++-13 testcase_09 :heavy_check_mark: AC 25 ms 4 MB
g++-13 testcase_10 :heavy_check_mark: AC 187 ms 46 MB
g++-13 testcase_11 :heavy_check_mark: AC 6 ms 4 MB
g++-13 testcase_12 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_13 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_14 :heavy_check_mark: AC 7 ms 4 MB
g++-13 testcase_15 :heavy_check_mark: AC 24 ms 4 MB
g++-13 testcase_16 :heavy_check_mark: AC 147 ms 6 MB
g++-13 testcase_17 :heavy_check_mark: AC 262 ms 14 MB
g++-13 testcase_18 :heavy_check_mark: AC 312 ms 25 MB
g++-13 testcase_19 :heavy_check_mark: AC 398 ms 46 MB
g++-13 testcase_20 :heavy_check_mark: AC 6 ms 4 MB
g++-13 testcase_21 :heavy_check_mark: AC 5 ms 4 MB
g++-13 testcase_22 :heavy_check_mark: AC 10 ms 4 MB
g++-13 testcase_23 :heavy_check_mark: AC 112 ms 5 MB
g++-13 testcase_24 :heavy_check_mark: AC 260 ms 20 MB
g++-13 testcase_25 :heavy_check_mark: AC 394 ms 46 MB
g++-13 testcase_26 :heavy_check_mark: AC 6 ms 4 MB
g++-13 testcase_27 :heavy_check_mark: AC 210 ms 8 MB
g++-13 testcase_28 :heavy_check_mark: AC 315 ms 25 MB
g++-13 testcase_29 :heavy_check_mark: AC 394 ms 46 MB
g++-13 testcase_30 :heavy_check_mark: AC 6 ms 3 MB
g++-13 testcase_31 :heavy_check_mark: AC 7 ms 4 MB
g++-13 testcase_32 :heavy_check_mark: AC 29 ms 4 MB
g++-13 testcase_33 :heavy_check_mark: AC 138 ms 10 MB
g++-13 testcase_34 :heavy_check_mark: AC 175 ms 25 MB
g++-13 testcase_35 :heavy_check_mark: AC 216 ms 44 MB
g++-13 testcase_36 :heavy_check_mark: AC 221 ms 45 MB
g++-13 testcase_37 :heavy_check_mark: AC 220 ms 46 MB
g++-13 testcase_38 :heavy_check_mark: AC 219 ms 46 MB
clang++-18 testcase_00 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_01 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_02 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_03 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_04 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_05 :heavy_check_mark: AC 91 ms 8 MB
clang++-18 testcase_06 :heavy_check_mark: AC 132 ms 25 MB
clang++-18 testcase_07 :heavy_check_mark: AC 164 ms 46 MB
clang++-18 testcase_08 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 testcase_09 :heavy_check_mark: AC 22 ms 4 MB
clang++-18 testcase_10 :heavy_check_mark: AC 174 ms 46 MB
clang++-18 testcase_11 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 testcase_12 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_13 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_14 :heavy_check_mark: AC 7 ms 4 MB
clang++-18 testcase_15 :heavy_check_mark: AC 22 ms 4 MB
clang++-18 testcase_16 :heavy_check_mark: AC 127 ms 6 MB
clang++-18 testcase_17 :heavy_check_mark: AC 225 ms 14 MB
clang++-18 testcase_18 :heavy_check_mark: AC 273 ms 25 MB
clang++-18 testcase_19 :heavy_check_mark: AC 360 ms 46 MB
clang++-18 testcase_20 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 testcase_21 :heavy_check_mark: AC 5 ms 4 MB
clang++-18 testcase_22 :heavy_check_mark: AC 10 ms 4 MB
clang++-18 testcase_23 :heavy_check_mark: AC 95 ms 5 MB
clang++-18 testcase_24 :heavy_check_mark: AC 231 ms 20 MB
clang++-18 testcase_25 :heavy_check_mark: AC 354 ms 46 MB
clang++-18 testcase_26 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 testcase_27 :heavy_check_mark: AC 181 ms 8 MB
clang++-18 testcase_28 :heavy_check_mark: AC 274 ms 25 MB
clang++-18 testcase_29 :heavy_check_mark: AC 362 ms 46 MB
clang++-18 testcase_30 :heavy_check_mark: AC 6 ms 4 MB
clang++-18 testcase_31 :heavy_check_mark: AC 7 ms 4 MB
clang++-18 testcase_32 :heavy_check_mark: AC 26 ms 4 MB
clang++-18 testcase_33 :heavy_check_mark: AC 125 ms 11 MB
clang++-18 testcase_34 :heavy_check_mark: AC 160 ms 25 MB
clang++-18 testcase_35 :heavy_check_mark: AC 196 ms 44 MB
clang++-18 testcase_36 :heavy_check_mark: AC 208 ms 45 MB
clang++-18 testcase_37 :heavy_check_mark: AC 200 ms 46 MB
clang++-18 testcase_38 :heavy_check_mark: AC 200 ms 46 MB
Back to top page