Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark: test/alone/remainder.test.cpp

Depends on

Code

// competitive-verifier: STANDALONE
#include <iostream>
#include <random>
#include <cassert>
#include <cstdint>
#include "src/Internal/Remainder.hpp"
using namespace std;
template <class Rem> bool test(uint64_t mod) {
 Rem md(mod);
 mt19937 rng(0);
 uniform_int_distribution<uint64_t> dist(2, mod - 1);
 __uint128_t expect= dist(rng);
 uint64_t x= md.set(expect);
 if (md.get(x) != expect) return false;
 for (int i= 100; i--;) {
  {
   __uint128_t y= dist(rng);
   (expect+= y)%= mod;
   x= md.plus(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
  {
   __uint128_t y= dist(rng);
   (expect+= mod - y)%= mod;
   x= md.diff(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
  {
   __uint128_t y= dist(rng);
   (expect*= y)%= mod;
   x= md.mul(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
 }
 return true;
}
signed main() {
 using namespace math_internal;
 assert(test<MP_Na>(998244353));
 assert(test<MP_Br>(998244353));
 assert(test<MP_Mo32>(998244353));

 assert(test<MP_Na>(1'000'000'007));
 assert(test<MP_Br>(1'000'000'007));
 assert(test<MP_Mo32>(1'000'000'007));

 assert(test<MP_Na>(1'000'000'009));
 assert(test<MP_Br>(1'000'000'009));
 assert(test<MP_Mo32>(1'000'000'009));

 assert(test<MP_D2B1_1>((1ull << 61) - 1));
 assert(test<MP_D2B1_2>((1ull << 61) - 1));
 assert(test<MP_Mo64>((1ull << 61) - 1));

 assert(test<MP_Na>(u32(-1)));
 assert(test<MP_Br>((1ull << 41) - 1));
 assert(test<MP_D2B1_1>((1ull << 63) - 1));
 assert(test<MP_D2B1_2>(u64(-1)));
 assert(test<MP_Mo64>((1ull << 62) - 1));
 {
  mt19937 rng(0);
  uniform_int_distribution<u32> dist(2, u32(-1));
  for (int i= 100; i--;) assert(test<MP_Na>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(1ull << 20, 1ull << 41);
  for (int i= 100; i--;) assert(test<MP_Br>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1ull << 63) - 1);
  for (int i= 100; i--;) assert(test<MP_D2B1_1>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist((1ull << 63) - 1, u64(-1));
  for (int i= 100; i--;) assert(test<MP_D2B1_2>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1 << 30) - 1);
  for (int i= 100; i--;) assert(test<MP_Mo32>(dist(rng) | 1));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1ull << 62) - 1);
  for (int i= 100; i--;) assert(test<MP_Mo64>(dist(rng) | 1));
 }
 return 0;
}
#line 1 "test/alone/remainder.test.cpp"
// competitive-verifier: STANDALONE
#include <iostream>
#include <random>
#include <cassert>
#include <cstdint>
#line 2 "src/Internal/Remainder.hpp"
namespace math_internal {
using namespace std;
using u8= unsigned char;
using u32= unsigned;
using i64= long long;
using u64= unsigned long long;
using u128= __uint128_t;
struct MP_Na {  // mod < 2^32
 u32 mod;
 constexpr MP_Na(): mod(0) {}
 constexpr MP_Na(u32 m): mod(m) {}
 constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }
 constexpr inline u32 set(u32 n) const { return n; }
 constexpr inline u32 get(u32 n) const { return n; }
 constexpr inline u32 norm(u32 n) const { return n; }
 constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }
};
template <class u_t, class du_t, u8 B> struct MP_Mo {  // mod < 2^32, mod < 2^62
 u_t mod;
 constexpr MP_Mo(): mod(0), iv(0), r2(0) {}
 constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}
 constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }
 constexpr inline u_t set(u_t n) const { return mul(n, r2); }
 constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }
 constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }
 constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }
private:
 u_t iv, r2;
 static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }
 constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }
};
using MP_Mo32= MP_Mo<u32, u64, 32>;
using MP_Mo64= MP_Mo<u64, u128, 64>;
struct MP_Br {  // 2^20 < mod <= 2^41
 u64 mod;
 constexpr MP_Br(): mod(0), x(0) {}
 constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }
 static constexpr inline u64 set(u64 n) { return n; }
 constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }
 constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }
 constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }
private:
 u64 x;
 constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }
 constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }
};
template <class du_t, u8 B> struct MP_D2B1 {  // mod < 2^63, mod < 2^64
 u64 mod;
 constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}
 constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}
 constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }
 constexpr inline u64 set(u64 n) const { return n; }
 constexpr inline u64 get(u64 n) const { return n; }
 constexpr inline u64 norm(u64 n) const { return n; }
 constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }
 constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }
private:
 u8 s;
 u64 d, v;
 constexpr inline u64 rem(const u128 &u) const {
  u128 q= (u >> 64) * v + u;
  u64 r= u64(u) - (q >> 64) * d - d;
  if (r > u64(q)) r+= d;
  if (r >= d) r-= d;
  return r;
 }
};
using MP_D2B1_1= MP_D2B1<u64, 63>;
using MP_D2B1_2= MP_D2B1<u128, 127>;
template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {
 for (u_t ret= md.set(1);; x= md.mul(x, x))
  if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;
}
}
#line 7 "test/alone/remainder.test.cpp"
using namespace std;
template <class Rem> bool test(uint64_t mod) {
 Rem md(mod);
 mt19937 rng(0);
 uniform_int_distribution<uint64_t> dist(2, mod - 1);
 __uint128_t expect= dist(rng);
 uint64_t x= md.set(expect);
 if (md.get(x) != expect) return false;
 for (int i= 100; i--;) {
  {
   __uint128_t y= dist(rng);
   (expect+= y)%= mod;
   x= md.plus(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
  {
   __uint128_t y= dist(rng);
   (expect+= mod - y)%= mod;
   x= md.diff(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
  {
   __uint128_t y= dist(rng);
   (expect*= y)%= mod;
   x= md.mul(x, md.set(y));
   if (md.get(x) != expect) return false;
  }
 }
 return true;
}
signed main() {
 using namespace math_internal;
 assert(test<MP_Na>(998244353));
 assert(test<MP_Br>(998244353));
 assert(test<MP_Mo32>(998244353));

 assert(test<MP_Na>(1'000'000'007));
 assert(test<MP_Br>(1'000'000'007));
 assert(test<MP_Mo32>(1'000'000'007));

 assert(test<MP_Na>(1'000'000'009));
 assert(test<MP_Br>(1'000'000'009));
 assert(test<MP_Mo32>(1'000'000'009));

 assert(test<MP_D2B1_1>((1ull << 61) - 1));
 assert(test<MP_D2B1_2>((1ull << 61) - 1));
 assert(test<MP_Mo64>((1ull << 61) - 1));

 assert(test<MP_Na>(u32(-1)));
 assert(test<MP_Br>((1ull << 41) - 1));
 assert(test<MP_D2B1_1>((1ull << 63) - 1));
 assert(test<MP_D2B1_2>(u64(-1)));
 assert(test<MP_Mo64>((1ull << 62) - 1));
 {
  mt19937 rng(0);
  uniform_int_distribution<u32> dist(2, u32(-1));
  for (int i= 100; i--;) assert(test<MP_Na>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(1ull << 20, 1ull << 41);
  for (int i= 100; i--;) assert(test<MP_Br>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1ull << 63) - 1);
  for (int i= 100; i--;) assert(test<MP_D2B1_1>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist((1ull << 63) - 1, u64(-1));
  for (int i= 100; i--;) assert(test<MP_D2B1_2>(dist(rng)));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1 << 30) - 1);
  for (int i= 100; i--;) assert(test<MP_Mo32>(dist(rng) | 1));
 }
 {
  mt19937_64 rng(0);
  uniform_int_distribution<u64> dist(2, (1ull << 62) - 1);
  for (int i= 100; i--;) assert(test<MP_Mo64>(dist(rng) | 1));
 }
 return 0;
}
Back to top page