This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "src/Optimization/simplified_larsch_dp.hpp"
名前 | 概要 | 計算量 |
---|---|---|
simplified_larsch_dp(N,w) |
\[\mathrm{dp}_ {i}=\begin{cases} 0 & i=0 \newline \min _{j\lt i}\lbrace\mathrm{dp}_j+w(i,j)\rbrace&i\gt 0\end{cases}\] の形のDPを解く. ただしコスト $w$ は Monge. 返り値は$\mathrm{dp}_i$ ( $i=0,\dots,N$ の $N+1$ 成分 ) |
$O(N\log N)$ |
https://noshi91.hatenablog.com/entry/2023/02/18/005856
#pragma once
#include <vector>
#include <limits>
#include "src/Internal/function_traits.hpp"
// dp[i] = min_{j<i} (dp[j] + w(i,j))
// w(i,j) -> monge cost
template <class F> std::vector<result_type_t<F>> simplified_larsch_dp(int n, const F &w) {
using T= result_type_t<F>;
std::vector<T> dp(n + 1, std::numeric_limits<T>::max());
std::vector<int> x(n + 1);
auto check= [&](int i, int j) {
if (T cost= dp[j] + w(i, j); dp[i] > cost) dp[i]= cost, x[i]= j;
};
auto rec= [&](auto &rec, int l, int r) {
if (r - l <= 1) return;
int m= (l + r) / 2;
for (int i= x[l]; i <= x[r]; ++i) check(m, i);
rec(rec, l, m);
for (int i= l + 1; i <= m; ++i) check(r, i);
rec(rec, m, r);
};
return dp[0]= 0, check(n, 0), rec(rec, 0, n), dp;
}
#line 2 "src/Optimization/simplified_larsch_dp.hpp"
#include <vector>
#include <limits>
#line 2 "src/Internal/function_traits.hpp"
#include <type_traits>
// clang-format off
namespace function_template_internal{
template<class C>struct is_function_object{
template<class U,int dummy=(&U::operator(),0)> static std::true_type check(U *);
static std::false_type check(...);
static C *m;
static constexpr bool value= decltype(check(m))::value;
};
template<class F,bool,bool>struct function_type_impl{using type= void;};
template<class F>struct function_type_impl<F,true,false>{using type= F *;};
template<class F>struct function_type_impl<F,false,true>{using type= decltype(&F::operator());};
template<class F> using function_type_t= typename function_type_impl<F,std::is_function_v<F>,is_function_object<F>::value>::type;
template<class... Args>struct result_type_impl{using type= void;};
template<class R,class... Args>struct result_type_impl<R(*)(Args...)>{using type= R;};
template<class C,class R,class... Args>struct result_type_impl<R(C::*)(Args...)>{using type= R;};
template<class C,class R,class... Args>struct result_type_impl<R(C::*)(Args...)const>{using type= R;};
template<class F> using result_type_t= typename result_type_impl<function_type_t<F>>::type;
template<class... Args>struct argument_type_impl{using type= void;};
template<class R,class... Args>struct argument_type_impl<R(*)(Args...)>{using type= std::tuple<Args...>;};
template<class C,class R,class... Args>struct argument_type_impl<R(C::*)(Args...)>{using type= std::tuple<Args...>;};
template<class C,class R,class... Args>struct argument_type_impl<R(C::*)(Args...)const>{using type= std::tuple<Args...>;};
template<class F> using argument_type_t= typename argument_type_impl<function_type_t<F>>::type;
}
using function_template_internal::result_type_t,function_template_internal::argument_type_t;
// clang-format on
#line 5 "src/Optimization/simplified_larsch_dp.hpp"
// dp[i] = min_{j<i} (dp[j] + w(i,j))
// w(i,j) -> monge cost
template <class F> std::vector<result_type_t<F>> simplified_larsch_dp(int n, const F &w) {
using T= result_type_t<F>;
std::vector<T> dp(n + 1, std::numeric_limits<T>::max());
std::vector<int> x(n + 1);
auto check= [&](int i, int j) {
if (T cost= dp[j] + w(i, j); dp[i] > cost) dp[i]= cost, x[i]= j;
};
auto rec= [&](auto &rec, int l, int r) {
if (r - l <= 1) return;
int m= (l + r) / 2;
for (int i= x[l]; i <= x[r]; ++i) check(m, i);
rec(rec, l, m);
for (int i= l + 1; i <= m; ++i) check(r, i);
rec(rec, m, r);
};
return dp[0]= 0, check(n, 0), rec(rec, 0, n), dp;
}