This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "src/NumberTheory/enumerate_primes.hpp"
エラトステネス篩による素数列挙の前処理を自動でおこなう.
名前 | 概要 | 計算量 |
---|---|---|
enumerate_primes(N) |
$N$ 以下のすべての素数を返す. 返り値は ListRange<int>
|
|
least_primes_factor(n) |
$n$ の最小素因数を返す. | |
completely_multiplicative_table<T>(N, f) |
完全乗法的関数 $f$ の値が入ったテーブルを返す. $f$ は素冪のもの f(p,e) $=f(p^e)$ を渡す(完全だけど).サイズは $N+1$. |
$\displaystyle O\left(N + \frac{N\alpha}{\log N}\right)$ ただし $f(p)$ の計算量を $O(\alpha)$ とおいた. |
pow_table<T>(N,k) |
$n^k$ の値が入ったテーブルを返す. サイズは $N+1$. |
$\displaystyle O\left(N + \frac{N\log k}{\log N}\right)$ |
https://37zigen.com/linear-sieve/
#pragma once
#include <algorithm>
#include <cstdint>
#include "src/Internal/ListRange.hpp"
namespace nt_internal {
using namespace std;
vector<int> ps, lf;
void sieve(int N) {
static int n= 2;
if (n > N) return;
if (lf.resize((N + 1) >> 1); n == 2) ps.push_back(n++);
int M= (N - 1) / 2;
for (int j= 1, e= ps.size(); j < e; ++j) {
int p= ps[j];
if (int64_t(p) * p > N) break;
for (auto k= int64_t(p) * max(n / p / 2 * 2 + 1, p) / 2; k <= M; k+= p) lf[k]+= p * !lf[k];
}
for (; n <= N; n+= 2)
if (!lf[n >> 1]) {
ps.push_back(lf[n >> 1]= n);
for (auto j= int64_t(n) * n / 2; j <= M; j+= n) lf[j]+= n * !lf[j];
}
}
ConstListRange<int> enumerate_primes() { return {ps.cbegin(), ps.cend()}; }
ConstListRange<int> enumerate_primes(int N) {
sieve(N);
return {ps.cbegin(), upper_bound(ps.cbegin(), ps.cend(), N)};
}
int least_prime_factor(int n) { return n & 1 ? sieve(n), lf[(n >> 1)] : 2; }
// f(p,e) := f(p^e)
template <class T, class F> vector<T> completely_multiplicative_table(int N, const F &f) {
vector<T> ret(N + 1);
sieve(N);
for (int n= 3, i= 1; n <= N; n+= 2, ++i) ret[n]= lf[i] == n ? f(n, 1) : ret[lf[i]] * ret[n / lf[i]];
if (int n= 4; 2 <= N)
for (T t= ret[2]= f(2, 1); n <= N; n+= 2) ret[n]= t * ret[n >> 1];
return ret[1]= 1, ret;
}
}
using nt_internal::enumerate_primes, nt_internal::least_prime_factor, nt_internal::completely_multiplicative_table;
// O(N log k / log N + N)
template <class T> static std::vector<T> pow_table(int N, uint64_t k) {
if (k == 0) return std::vector<T>(N + 1, 1);
auto f= [k](int p, int) {
T ret= 1, b= p;
for (auto e= k;; b*= b) {
if (e & 1) ret*= b;
if (!(e>>= 1)) return ret;
}
};
return completely_multiplicative_table<T>(N, f);
}
#line 2 "src/NumberTheory/enumerate_primes.hpp"
#include <algorithm>
#include <cstdint>
#line 2 "src/Internal/ListRange.hpp"
#include <vector>
#include <iostream>
#include <iterator>
#include <type_traits>
#define _LR(name, IT, CT) \
template <class T> struct name { \
using Iterator= typename std::vector<T>::IT; \
Iterator bg, ed; \
Iterator begin() const { return bg; } \
Iterator end() const { return ed; } \
size_t size() const { return std::distance(bg, ed); } \
CT &operator[](int i) const { return bg[i]; } \
}
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
std::vector<T> dat;
std::vector<int> p;
size_t size() const { return p.size() - 1; }
ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
os << '[';
for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
return os << ']';
}
#line 5 "src/NumberTheory/enumerate_primes.hpp"
namespace nt_internal {
using namespace std;
vector<int> ps, lf;
void sieve(int N) {
static int n= 2;
if (n > N) return;
if (lf.resize((N + 1) >> 1); n == 2) ps.push_back(n++);
int M= (N - 1) / 2;
for (int j= 1, e= ps.size(); j < e; ++j) {
int p= ps[j];
if (int64_t(p) * p > N) break;
for (auto k= int64_t(p) * max(n / p / 2 * 2 + 1, p) / 2; k <= M; k+= p) lf[k]+= p * !lf[k];
}
for (; n <= N; n+= 2)
if (!lf[n >> 1]) {
ps.push_back(lf[n >> 1]= n);
for (auto j= int64_t(n) * n / 2; j <= M; j+= n) lf[j]+= n * !lf[j];
}
}
ConstListRange<int> enumerate_primes() { return {ps.cbegin(), ps.cend()}; }
ConstListRange<int> enumerate_primes(int N) {
sieve(N);
return {ps.cbegin(), upper_bound(ps.cbegin(), ps.cend(), N)};
}
int least_prime_factor(int n) { return n & 1 ? sieve(n), lf[(n >> 1)] : 2; }
// f(p,e) := f(p^e)
template <class T, class F> vector<T> completely_multiplicative_table(int N, const F &f) {
vector<T> ret(N + 1);
sieve(N);
for (int n= 3, i= 1; n <= N; n+= 2, ++i) ret[n]= lf[i] == n ? f(n, 1) : ret[lf[i]] * ret[n / lf[i]];
if (int n= 4; 2 <= N)
for (T t= ret[2]= f(2, 1); n <= N; n+= 2) ret[n]= t * ret[n >> 1];
return ret[1]= 1, ret;
}
}
using nt_internal::enumerate_primes, nt_internal::least_prime_factor, nt_internal::completely_multiplicative_table;
// O(N log k / log N + N)
template <class T> static std::vector<T> pow_table(int N, uint64_t k) {
if (k == 0) return std::vector<T>(N + 1, 1);
auto f= [k](int p, int) {
T ret= 1, b= p;
for (auto e= k;; b*= b) {
if (e & 1) ret*= b;
if (!(e>>= 1)) return ret;
}
};
return completely_multiplicative_table<T>(N, f);
}