This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "src/Graph/CliqueProblem.hpp"
内部でグラフを隣接行列で表現してる.
名前 | 概要 | 計算量 |
---|---|---|
CliqueProblem(n) |
コンストラクタ. グラフの頂点数 n を与える. | |
add_edge(u,v) |
無向辺 (u,v) を加える. | |
get_max_clique() |
最大クリークの一つを返す. | $O(1.381^nn)$ |
get_max_independent_set() |
最大独立集合の一つを返す. | $O(1.381^nn)$ |
get_min_vertex_cover() |
最小頂点被覆の一つを返す. | $O(1.381^nn)$ |
enumerate_cliques(out) |
すべてのクリークcに対してout(c) を実行する. | $O(n2^{\sqrt{2m}})$ $m$ は辺の数 |
#pragma once
#include <vector>
#include <algorithm>
class CliqueProblem {
using u128= __uint128_t;
using u64= unsigned long long;
using u16= unsigned short;
const u16 n, m;
struct id_num {
u16 id, num;
};
std::vector<u128> adj_;
std::vector<u16> calc(bool complement) const {
std::vector<u128> buf, adj(adj_);
std::vector<u16> deg(n), clique, cur;
if (complement)
for (int u= n; u--;)
for (int v= u; v--;) adj[u * m + (v >> 7)]^= u128(1) << (v & 127), adj[v * m + (u >> 7)]^= u128(1) << (u & 127);
auto dfs= [&](auto dfs, std::vector<id_num> &rem) -> void {
if (clique.size() < cur.size()) clique= cur;
std::sort(rem.begin(), rem.end(), [&](id_num l, id_num r) { return deg[l.id] > deg[r.id]; }), buf.assign((n + 1) * m, 0);
for (auto &v: rem) {
int b= v.id * m, bb= 0;
for (v.num= 0;; ++v.num, bb+= m) {
bool any= 1;
for (u16 i= 0; i < m; ++i) any&= !(adj[b + i] & buf[bb + i]);
if (any) break;
}
buf[bb + (v.id >> 7)]|= u128(1) << (v.id & 127);
}
std::sort(rem.begin(), rem.end(), [&](id_num l, id_num r) { return l.num < r.num; });
std::vector<id_num> nrem;
for (nrem.reserve(rem.size()); !rem.empty();) {
auto p= rem.back();
if (p.num + cur.size() < clique.size()) break;
nrem.clear();
auto a= adj.cbegin() + p.id * m;
for (auto u: rem)
if ((a[u.id >> 7] >> (u.id & 127)) & 1) nrem.emplace_back(u);
std::fill_n(buf.begin(), m, 0);
for (auto u: nrem) buf[u.id >> 7]|= u128(1) << (u.id & 127);
for (auto u: nrem) {
int b= u.id * m, i= 0, cnt= 0;
for (u128 tmp; i < m; ++i) tmp= buf[i] & adj[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
deg[u.id]= cnt;
}
cur.push_back(p.id), dfs(dfs, nrem), cur.pop_back(), rem.pop_back();
}
};
std::vector<id_num> nrem;
for (u16 u= n, cnt; u--; nrem.push_back(id_num{u, 0}), deg[u]= cnt) {
int b= u * m, i= cnt= 0;
for (u128 tmp; i < m; ++i) tmp= adj[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
}
return dfs(dfs, nrem), clique;
}
public:
CliqueProblem(int n): n(n), m((n + 127) >> 7), adj_(n * m) {}
void add_edge(int u, int v) { adj_[u * m + (v >> 7)]|= u128(1) << (v & 127), adj_[v * m + (u >> 7)]|= u128(1) << (u & 127); }
std::vector<u16> get_max_clique() const { return calc(false); }
std::vector<u16> get_max_independent_set() const { return calc(true); }
std::vector<u16> get_min_vertex_cover() const {
std::vector<u128> buf(m);
for (u16 u: calc(true)) buf[u >> 7]|= u128(1) << (u & 127);
std::vector<u16> ret;
for (u16 i= 0; i < n; ++i)
if (!((buf[i >> 7] >> (i & 127)) & 1)) ret.push_back(i);
return ret;
}
template <class F> void enumerate_cliques(const F &out) const {
std::vector<u128> buf;
std::vector<u16> deg(n), clique, nbd;
for (u16 u= n, cnt; u--; deg[u]= cnt) {
int b= u * m, i= cnt= 0;
for (u128 tmp; i < m; ++i) tmp= adj_[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
}
u16 nn;
auto dfs= [&](auto dfs, u16 k) -> void {
out(clique);
for (u16 i= k; i < nn; ++i) {
u16 v= nbd[i];
auto b= adj_.cbegin() + v * m;
bool all= 1;
for (u16 j= 0; j < m; ++j) all&= (b[j] & buf[j]) == buf[j];
if (all) clique.push_back(v), buf[v >> 7]|= u128(1) << (v & 127), dfs(dfs, i + 1), clique.pop_back(), buf[v >> 7]^= u128(1) << (v & 127);
}
};
bool unused[n];
std::fill_n(unused, n, 1);
for (u16 _= n; _--;) {
u16 v, min_d= n;
for (u16 i= n; i--;)
if (unused[i] && min_d > deg[i]) v= i, min_d= deg[i];
nbd.clear(), clique= {v}, buf.assign(m, 0), buf[v >> 7]|= u128(1) << (v & 127);
auto a= adj_.cbegin() + v * m;
for (int i= 0; i < n; ++i)
if ((a[i >> 7] >> (i & 127)) & unused[i]) nbd.push_back(i);
nn= nbd.size(), dfs(dfs, 0), unused[v]= 0;
for (auto u: nbd) --deg[u];
}
}
};
#line 2 "src/Graph/CliqueProblem.hpp"
#include <vector>
#include <algorithm>
class CliqueProblem {
using u128= __uint128_t;
using u64= unsigned long long;
using u16= unsigned short;
const u16 n, m;
struct id_num {
u16 id, num;
};
std::vector<u128> adj_;
std::vector<u16> calc(bool complement) const {
std::vector<u128> buf, adj(adj_);
std::vector<u16> deg(n), clique, cur;
if (complement)
for (int u= n; u--;)
for (int v= u; v--;) adj[u * m + (v >> 7)]^= u128(1) << (v & 127), adj[v * m + (u >> 7)]^= u128(1) << (u & 127);
auto dfs= [&](auto dfs, std::vector<id_num> &rem) -> void {
if (clique.size() < cur.size()) clique= cur;
std::sort(rem.begin(), rem.end(), [&](id_num l, id_num r) { return deg[l.id] > deg[r.id]; }), buf.assign((n + 1) * m, 0);
for (auto &v: rem) {
int b= v.id * m, bb= 0;
for (v.num= 0;; ++v.num, bb+= m) {
bool any= 1;
for (u16 i= 0; i < m; ++i) any&= !(adj[b + i] & buf[bb + i]);
if (any) break;
}
buf[bb + (v.id >> 7)]|= u128(1) << (v.id & 127);
}
std::sort(rem.begin(), rem.end(), [&](id_num l, id_num r) { return l.num < r.num; });
std::vector<id_num> nrem;
for (nrem.reserve(rem.size()); !rem.empty();) {
auto p= rem.back();
if (p.num + cur.size() < clique.size()) break;
nrem.clear();
auto a= adj.cbegin() + p.id * m;
for (auto u: rem)
if ((a[u.id >> 7] >> (u.id & 127)) & 1) nrem.emplace_back(u);
std::fill_n(buf.begin(), m, 0);
for (auto u: nrem) buf[u.id >> 7]|= u128(1) << (u.id & 127);
for (auto u: nrem) {
int b= u.id * m, i= 0, cnt= 0;
for (u128 tmp; i < m; ++i) tmp= buf[i] & adj[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
deg[u.id]= cnt;
}
cur.push_back(p.id), dfs(dfs, nrem), cur.pop_back(), rem.pop_back();
}
};
std::vector<id_num> nrem;
for (u16 u= n, cnt; u--; nrem.push_back(id_num{u, 0}), deg[u]= cnt) {
int b= u * m, i= cnt= 0;
for (u128 tmp; i < m; ++i) tmp= adj[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
}
return dfs(dfs, nrem), clique;
}
public:
CliqueProblem(int n): n(n), m((n + 127) >> 7), adj_(n * m) {}
void add_edge(int u, int v) { adj_[u * m + (v >> 7)]|= u128(1) << (v & 127), adj_[v * m + (u >> 7)]|= u128(1) << (u & 127); }
std::vector<u16> get_max_clique() const { return calc(false); }
std::vector<u16> get_max_independent_set() const { return calc(true); }
std::vector<u16> get_min_vertex_cover() const {
std::vector<u128> buf(m);
for (u16 u: calc(true)) buf[u >> 7]|= u128(1) << (u & 127);
std::vector<u16> ret;
for (u16 i= 0; i < n; ++i)
if (!((buf[i >> 7] >> (i & 127)) & 1)) ret.push_back(i);
return ret;
}
template <class F> void enumerate_cliques(const F &out) const {
std::vector<u128> buf;
std::vector<u16> deg(n), clique, nbd;
for (u16 u= n, cnt; u--; deg[u]= cnt) {
int b= u * m, i= cnt= 0;
for (u128 tmp; i < m; ++i) tmp= adj_[b + i], cnt+= __builtin_popcountll(tmp >> 64) + __builtin_popcountll(u64(tmp));
}
u16 nn;
auto dfs= [&](auto dfs, u16 k) -> void {
out(clique);
for (u16 i= k; i < nn; ++i) {
u16 v= nbd[i];
auto b= adj_.cbegin() + v * m;
bool all= 1;
for (u16 j= 0; j < m; ++j) all&= (b[j] & buf[j]) == buf[j];
if (all) clique.push_back(v), buf[v >> 7]|= u128(1) << (v & 127), dfs(dfs, i + 1), clique.pop_back(), buf[v >> 7]^= u128(1) << (v & 127);
}
};
bool unused[n];
std::fill_n(unused, n, 1);
for (u16 _= n; _--;) {
u16 v, min_d= n;
for (u16 i= n; i--;)
if (unused[i] && min_d > deg[i]) v= i, min_d= deg[i];
nbd.clear(), clique= {v}, buf.assign(m, 0), buf[v >> 7]|= u128(1) << (v & 127);
auto a= adj_.cbegin() + v * m;
for (int i= 0; i < n; ++i)
if ((a[i >> 7] >> (i & 127)) & unused[i]) nbd.push_back(i);
nn= nbd.size(), dfs(dfs, 0), unused[v]= 0;
for (auto u: nbd) --deg[u];
}
}
};