Hashiryo's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub hashiryo/Library

:heavy_check_mark:(src/Geometry/Point.hpp)

二次元幾何のベースとなる部分.
一応三角関数や平方根を使わないものに関しては Rational クラスも乗せられるはず.
名前空間 geo 内で全て定義している.

関数

名前 概要
sgn(x) 誤差を考慮するための関数.
負なら-1, 正なら+1, それ以外なら0を返す.
ただし浮動小数点数の場合絶対値が $10^{-9}$ 以下なら0とみなす.
err_floor(x) 床関数. sgn に従って結果を返す.
err_ceil(x) 天井関数. sgn に従って結果を返す.

Point<K> クラス

二次元空間上の点およびベクトルを表すクラス.
publicメンバ変数 x, y を持つ.
辞書順によって不等号を定義している. (set とか map とかの keyにできる.)
! 演算子で原点を中心に $\pi/2$ だけ回転したものを返すようにした

Point<K> クラスを引数に取る関数

名前 概要
dot(p,q) $\boldsymbol{p}\cdot \boldsymbol{q}$
cross(p,q) $\boldsymbol{p}\times \boldsymbol{q}$
$\boldsymbol{p}$ から $\boldsymbol{q}$ へ反時計回りなら正.
norm2(p) $\lVert \boldsymbol{p}\rVert^2$
norm(p) $\lVert \boldsymbol{p}\rVert$
Rational は動かない.
dist2(p,q) 点 $\boldsymbol{p}$, $\boldsymbol{q}$ 間のユークリッド距離の二乗.
dist(a,b) オブジェクト $a$, $b$ 間のユークリッド距離.
Rational は動かない.
dist2 の結果を sqrt したもの.
直線・線分・多角形なども dist2 を定義することで自動的にこれも定義される.
ccw(p0,p1,p2) $\boldsymbol{p}_0\rightarrow \boldsymbol{p}_1\rightarrow \boldsymbol{p}_2$ の順に訪れた時の軌道を5種類に分類.
COUNTER_CLOCKWISE: 左折
CLOCKWISE: 右折
ONLINE_FRONT: 直進
ONLINE_BACK: Uターン ( $\boldsymbol{p}_2$ が $\boldsymbol{p}_0$ より後ろ ) 
ON_SEGMENT: Uターン( $\boldsymbol{p}_2$ が $\boldsymbol{p}_0$ と $\boldsymbol{p}_1$ の間)
operator>>(istream&is, Point&p) x yのフォーマットの入力に対応.

Affine<K> クラス

アフィン変換のための関数オブジェクト.
が、使いそうな変換は平行移動・回転・折り返しを合成したものくらいか
operator()(x) で点,直線,線分,多角形を変換する.
operator*(f,g) で合成 $f\circ g = f(g(x))$

Affine<K> を返す関数

名前 概要
translate(p) ベクトル $\boldsymbol{p}$ だけ平行移動する変換を返す.

Depends on

Required by

Verified with

Code

#pragma once
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cassert>
#include "src/Internal/long_traits.hpp"
namespace geo {
using namespace std;
struct Visualizer {
 ofstream ofs;
 Visualizer(string s= "visualize.txt"): ofs(s) { ofs << fixed << setprecision(10); }
 friend Visualizer &operator<<(Visualizer &vis, const string &s) { return vis.ofs << s, vis; }
};
template <class K> int sgn(K x) {
 if constexpr (is_floating_point_v<K>) {
  static constexpr K EPS= 1e-9;
  return x < -EPS ? -1 : x > EPS;
 } else return x < 0 ? -1 : x > 0;
}
template <class K> K err_floor(K x) {
 K y= floor(x);
 if constexpr (is_floating_point_v<K>)
  if (K z= y + 1, w= x - z; 0 <= sgn(w) && sgn(w - 1) < 0) return z;
 return y;
}
template <class K> K err_ceil(K x) {
 K y= ceil(x);
 if constexpr (is_floating_point_v<K>)
  if (K z= y - 1, w= x - z; 0 < sgn(w + 1) && sgn(w) <= 0) return z;
 return y;
}
template <class K> struct Point {
 K x, y;
 Point(K x= K(), K y= K()): x(x), y(y) {}
 Point &operator+=(const Point &p) { return x+= p.x, y+= p.y, *this; }
 Point &operator-=(const Point &p) { return x-= p.x, y-= p.y, *this; }
 Point &operator*=(K a) { return x*= a, y*= a, *this; }
 Point &operator/=(K a) { return x/= a, y/= a, *this; }
 Point operator+(const Point &p) const { return {x + p.x, y + p.y}; }
 Point operator-(const Point &p) const { return {x - p.x, y - p.y}; }
 Point operator*(K a) const { return {x * a, y * a}; }
 Point operator/(K a) const { return {x / a, y / a}; }
 friend Point operator*(K a, const Point &p) { return {a * p.x, a * p.y}; }
 Point operator-() const { return {-x, -y}; }
 bool operator<(const Point &p) const {
  int s= sgn(x - p.x);
  return s ? s < 0 : sgn(y - p.y) < 0;
 }
 bool operator>(const Point &p) const { return p < *this; }
 bool operator<=(const Point &p) const { return !(p < *this); }
 bool operator>=(const Point &p) const { return !(*this < p); }
 bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y); }
 bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y); }
 Point operator!() const { return {-y, x}; }  // rotate 90 degree
 friend istream &operator>>(istream &is, Point &p) { return is >> p.x >> p.y; }
 friend ostream &operator<<(ostream &os, const Point &p) { return os << "(" << p.x << ", " << p.y << ")"; }
 friend Visualizer &operator<<(Visualizer &vis, const Point &p) { return vis.ofs << p.x << " " << p.y << "\n", vis; }
};
template <class K> make_long_t<K> dot(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.x + make_long_t<K>(p.y) * q.y; }
// left turn: > 0, right turn: < 0
template <class K> make_long_t<K> cross(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.y - make_long_t<K>(p.y) * q.x; }
template <class K> make_long_t<K> norm2(const Point<K> &p) { return dot(p, p); }
template <class K> long double norm(const Point<K> &p) { return sqrt(norm2(p)); }
template <class K> make_long_t<K> dist2(const Point<K> &p, const Point<K> &q) { return norm2(p - q); }
template <class T, class U> long double dist(const T &a, const U &b) { return sqrt(dist2(a, b)); }
enum CCW { COUNTER_CLOCKWISE, CLOCKWISE, ONLINE_BACK, ONLINE_FRONT, ON_SEGMENT };
ostream &operator<<(ostream &os, CCW c) { return os << (c == COUNTER_CLOCKWISE ? "COUNTER_CLOCKWISE" : c == CLOCKWISE ? "CLOCKWISE" : c == ONLINE_BACK ? "ONLINE_BACK" : c == ONLINE_FRONT ? "ONLINE_FRONT" : "ON_SEGMENT"); }
template <class K> CCW ccw(const Point<K> &p0, const Point<K> &p1, const Point<K> &p2) {
 Point a= p1 - p0, b= p2 - p0;
 int s;
 if constexpr (is_floating_point_v<K>) s= sgn(sgn(cross(a, b) / sqrt(norm2(a) * norm2(b))));
 else s= sgn(cross(a, b));
 if (s) return s > 0 ? COUNTER_CLOCKWISE : CLOCKWISE;
 if (K d= dot(a, b); sgn(d) < 0) return ONLINE_BACK;
 else return sgn(d - norm2(a)) > 0 ? ONLINE_FRONT : ON_SEGMENT;
}
template <class K> struct Line;
template <class K> struct Segment;
template <class K> class Polygon;
template <class K> struct Convex;
template <class K> struct Affine {
 K a00= 1, a01= 0, a10= 0, a11= 1;
 Point<K> b;
 Point<K> operator()(const Point<K> &p) const { return {a00 * p.x + a01 * p.y + b.x, a10 * p.x + a11 * p.y + b.y}; }
 Line<K> operator()(const Line<K> &l);
 Segment<K> operator()(const Segment<K> &s);
 Polygon<K> operator()(const Polygon<K> &p);
 Convex<K> operator()(const Convex<K> &c);
 Affine operator*(const Affine &r) const { return {a00 * r.a00 + a01 * r.a10, a00 * r.a01 + a01 * r.a11, a10 * r.a00 + a11 * r.a10, a10 * r.a01 + a11 * r.a11, (*this)(r)}; }
 Affine &operator*=(const Affine &r) { return *this= *this * r; }
};
template <class K> Affine<K> translate(const Point<K> &p) { return {1, 0, 0, 1, p}; }
}
#line 2 "src/Geometry/Point.hpp"
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cassert>
#line 2 "src/Internal/long_traits.hpp"
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<char>{using type= short;};
template<>struct make_long<unsigned char>{using type= unsigned short;};
template<>struct make_long<short>{using type= int;};
template<>struct make_long<unsigned short>{using type= unsigned;};
template<>struct make_long<int>{using type= long long;};
template<>struct make_long<unsigned>{using type= unsigned long long;};
template<>struct make_long<long long>{using type= __int128_t;};
template<>struct make_long<unsigned long long>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
#line 8 "src/Geometry/Point.hpp"
namespace geo {
using namespace std;
struct Visualizer {
 ofstream ofs;
 Visualizer(string s= "visualize.txt"): ofs(s) { ofs << fixed << setprecision(10); }
 friend Visualizer &operator<<(Visualizer &vis, const string &s) { return vis.ofs << s, vis; }
};
template <class K> int sgn(K x) {
 if constexpr (is_floating_point_v<K>) {
  static constexpr K EPS= 1e-9;
  return x < -EPS ? -1 : x > EPS;
 } else return x < 0 ? -1 : x > 0;
}
template <class K> K err_floor(K x) {
 K y= floor(x);
 if constexpr (is_floating_point_v<K>)
  if (K z= y + 1, w= x - z; 0 <= sgn(w) && sgn(w - 1) < 0) return z;
 return y;
}
template <class K> K err_ceil(K x) {
 K y= ceil(x);
 if constexpr (is_floating_point_v<K>)
  if (K z= y - 1, w= x - z; 0 < sgn(w + 1) && sgn(w) <= 0) return z;
 return y;
}
template <class K> struct Point {
 K x, y;
 Point(K x= K(), K y= K()): x(x), y(y) {}
 Point &operator+=(const Point &p) { return x+= p.x, y+= p.y, *this; }
 Point &operator-=(const Point &p) { return x-= p.x, y-= p.y, *this; }
 Point &operator*=(K a) { return x*= a, y*= a, *this; }
 Point &operator/=(K a) { return x/= a, y/= a, *this; }
 Point operator+(const Point &p) const { return {x + p.x, y + p.y}; }
 Point operator-(const Point &p) const { return {x - p.x, y - p.y}; }
 Point operator*(K a) const { return {x * a, y * a}; }
 Point operator/(K a) const { return {x / a, y / a}; }
 friend Point operator*(K a, const Point &p) { return {a * p.x, a * p.y}; }
 Point operator-() const { return {-x, -y}; }
 bool operator<(const Point &p) const {
  int s= sgn(x - p.x);
  return s ? s < 0 : sgn(y - p.y) < 0;
 }
 bool operator>(const Point &p) const { return p < *this; }
 bool operator<=(const Point &p) const { return !(p < *this); }
 bool operator>=(const Point &p) const { return !(*this < p); }
 bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y); }
 bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y); }
 Point operator!() const { return {-y, x}; }  // rotate 90 degree
 friend istream &operator>>(istream &is, Point &p) { return is >> p.x >> p.y; }
 friend ostream &operator<<(ostream &os, const Point &p) { return os << "(" << p.x << ", " << p.y << ")"; }
 friend Visualizer &operator<<(Visualizer &vis, const Point &p) { return vis.ofs << p.x << " " << p.y << "\n", vis; }
};
template <class K> make_long_t<K> dot(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.x + make_long_t<K>(p.y) * q.y; }
// left turn: > 0, right turn: < 0
template <class K> make_long_t<K> cross(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.y - make_long_t<K>(p.y) * q.x; }
template <class K> make_long_t<K> norm2(const Point<K> &p) { return dot(p, p); }
template <class K> long double norm(const Point<K> &p) { return sqrt(norm2(p)); }
template <class K> make_long_t<K> dist2(const Point<K> &p, const Point<K> &q) { return norm2(p - q); }
template <class T, class U> long double dist(const T &a, const U &b) { return sqrt(dist2(a, b)); }
enum CCW { COUNTER_CLOCKWISE, CLOCKWISE, ONLINE_BACK, ONLINE_FRONT, ON_SEGMENT };
ostream &operator<<(ostream &os, CCW c) { return os << (c == COUNTER_CLOCKWISE ? "COUNTER_CLOCKWISE" : c == CLOCKWISE ? "CLOCKWISE" : c == ONLINE_BACK ? "ONLINE_BACK" : c == ONLINE_FRONT ? "ONLINE_FRONT" : "ON_SEGMENT"); }
template <class K> CCW ccw(const Point<K> &p0, const Point<K> &p1, const Point<K> &p2) {
 Point a= p1 - p0, b= p2 - p0;
 int s;
 if constexpr (is_floating_point_v<K>) s= sgn(sgn(cross(a, b) / sqrt(norm2(a) * norm2(b))));
 else s= sgn(cross(a, b));
 if (s) return s > 0 ? COUNTER_CLOCKWISE : CLOCKWISE;
 if (K d= dot(a, b); sgn(d) < 0) return ONLINE_BACK;
 else return sgn(d - norm2(a)) > 0 ? ONLINE_FRONT : ON_SEGMENT;
}
template <class K> struct Line;
template <class K> struct Segment;
template <class K> class Polygon;
template <class K> struct Convex;
template <class K> struct Affine {
 K a00= 1, a01= 0, a10= 0, a11= 1;
 Point<K> b;
 Point<K> operator()(const Point<K> &p) const { return {a00 * p.x + a01 * p.y + b.x, a10 * p.x + a11 * p.y + b.y}; }
 Line<K> operator()(const Line<K> &l);
 Segment<K> operator()(const Segment<K> &s);
 Polygon<K> operator()(const Polygon<K> &p);
 Convex<K> operator()(const Convex<K> &c);
 Affine operator*(const Affine &r) const { return {a00 * r.a00 + a01 * r.a10, a00 * r.a01 + a01 * r.a11, a10 * r.a00 + a11 * r.a10, a10 * r.a01 + a11 * r.a11, (*this)(r)}; }
 Affine &operator*=(const Affine &r) { return *this= *this * r; }
};
template <class K> Affine<K> translate(const Point<K> &p) { return {1, 0, 0, 1, p}; }
}
Back to top page