This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "src/Geometry/Point.hpp"
二次元幾何のベースとなる部分.
一応三角関数や平方根を使わないものに関しては Rational
クラスも乗せられるはず.
名前空間 geo
内で全て定義している.
名前 | 概要 |
---|---|
sgn(x) |
誤差を考慮するための関数. 負なら-1, 正なら+1, それ以外なら0を返す. ただし浮動小数点数の場合絶対値が $10^{-9}$ 以下なら0とみなす. |
err_floor(x) |
床関数. sgn に従って結果を返す. |
err_ceil(x) |
天井関数. sgn に従って結果を返す. |
Point<K>
クラス二次元空間上の点およびベクトルを表すクラス.
publicメンバ変数 x
, y
を持つ.
辞書順によって不等号を定義している. (set
とか map
とかの keyにできる.)
!
演算子で原点を中心に $\pi/2$ だけ回転したものを返すようにした
Point<K>
クラスを引数に取る関数名前 | 概要 |
---|---|
dot(p,q) |
$\boldsymbol{p}\cdot \boldsymbol{q}$ |
cross(p,q) |
$\boldsymbol{p}\times \boldsymbol{q}$ $\boldsymbol{p}$ から $\boldsymbol{q}$ へ反時計回りなら正. |
norm2(p) |
$\lVert \boldsymbol{p}\rVert^2$ |
norm(p) |
$\lVert \boldsymbol{p}\rVert$ Rational は動かない. |
dist2(p,q) |
点 $\boldsymbol{p}$, $\boldsymbol{q}$ 間のユークリッド距離の二乗. |
dist(a,b) |
オブジェクト $a$, $b$ 間のユークリッド距離. Rational は動かない. dist2 の結果を sqrt したもの. 直線・線分・多角形なども dist2 を定義することで自動的にこれも定義される. |
ccw(p0,p1,p2) |
$\boldsymbol{p}_0\rightarrow \boldsymbol{p}_1\rightarrow \boldsymbol{p}_2$ の順に訪れた時の軌道を5種類に分類. COUNTER_CLOCKWISE : 左折 CLOCKWISE : 右折 ONLINE_FRONT : 直進 ONLINE_BACK : Uターン ( $\boldsymbol{p}_2$ が $\boldsymbol{p}_0$ より後ろ ) ON_SEGMENT : Uターン( $\boldsymbol{p}_2$ が $\boldsymbol{p}_0$ と $\boldsymbol{p}_1$ の間) |
operator>>(istream&is, Point&p) |
x y のフォーマットの入力に対応. |
Affine<K>
クラスアフィン変換のための関数オブジェクト.
が、使いそうな変換は平行移動・回転・折り返しを合成したものくらいか
operator()(x)
で点,直線,線分,多角形を変換する.
operator*(f,g)
で合成 $f\circ g = f(g(x))$
Affine<K>
を返す関数名前 | 概要 |
---|---|
translate(p) |
ベクトル $\boldsymbol{p}$ だけ平行移動する変換を返す. |
#pragma once
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cassert>
#include "src/Internal/long_traits.hpp"
namespace geo {
using namespace std;
struct Visualizer {
ofstream ofs;
Visualizer(string s= "visualize.txt"): ofs(s) { ofs << fixed << setprecision(10); }
friend Visualizer &operator<<(Visualizer &vis, const string &s) { return vis.ofs << s, vis; }
};
template <class K> int sgn(K x) {
if constexpr (is_floating_point_v<K>) {
static constexpr K EPS= 1e-9;
return x < -EPS ? -1 : x > EPS;
} else return x < 0 ? -1 : x > 0;
}
template <class K> K err_floor(K x) {
K y= floor(x);
if constexpr (is_floating_point_v<K>)
if (K z= y + 1, w= x - z; 0 <= sgn(w) && sgn(w - 1) < 0) return z;
return y;
}
template <class K> K err_ceil(K x) {
K y= ceil(x);
if constexpr (is_floating_point_v<K>)
if (K z= y - 1, w= x - z; 0 < sgn(w + 1) && sgn(w) <= 0) return z;
return y;
}
template <class K> struct Point {
K x, y;
Point(K x= K(), K y= K()): x(x), y(y) {}
Point &operator+=(const Point &p) { return x+= p.x, y+= p.y, *this; }
Point &operator-=(const Point &p) { return x-= p.x, y-= p.y, *this; }
Point &operator*=(K a) { return x*= a, y*= a, *this; }
Point &operator/=(K a) { return x/= a, y/= a, *this; }
Point operator+(const Point &p) const { return {x + p.x, y + p.y}; }
Point operator-(const Point &p) const { return {x - p.x, y - p.y}; }
Point operator*(K a) const { return {x * a, y * a}; }
Point operator/(K a) const { return {x / a, y / a}; }
friend Point operator*(K a, const Point &p) { return {a * p.x, a * p.y}; }
Point operator-() const { return {-x, -y}; }
bool operator<(const Point &p) const {
int s= sgn(x - p.x);
return s ? s < 0 : sgn(y - p.y) < 0;
}
bool operator>(const Point &p) const { return p < *this; }
bool operator<=(const Point &p) const { return !(p < *this); }
bool operator>=(const Point &p) const { return !(*this < p); }
bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y); }
bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y); }
Point operator!() const { return {-y, x}; } // rotate 90 degree
friend istream &operator>>(istream &is, Point &p) { return is >> p.x >> p.y; }
friend ostream &operator<<(ostream &os, const Point &p) { return os << "(" << p.x << ", " << p.y << ")"; }
friend Visualizer &operator<<(Visualizer &vis, const Point &p) { return vis.ofs << p.x << " " << p.y << "\n", vis; }
};
template <class K> make_long_t<K> dot(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.x + make_long_t<K>(p.y) * q.y; }
// left turn: > 0, right turn: < 0
template <class K> make_long_t<K> cross(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.y - make_long_t<K>(p.y) * q.x; }
template <class K> make_long_t<K> norm2(const Point<K> &p) { return dot(p, p); }
template <class K> long double norm(const Point<K> &p) { return sqrt(norm2(p)); }
template <class K> make_long_t<K> dist2(const Point<K> &p, const Point<K> &q) { return norm2(p - q); }
template <class T, class U> long double dist(const T &a, const U &b) { return sqrt(dist2(a, b)); }
enum CCW { COUNTER_CLOCKWISE, CLOCKWISE, ONLINE_BACK, ONLINE_FRONT, ON_SEGMENT };
ostream &operator<<(ostream &os, CCW c) { return os << (c == COUNTER_CLOCKWISE ? "COUNTER_CLOCKWISE" : c == CLOCKWISE ? "CLOCKWISE" : c == ONLINE_BACK ? "ONLINE_BACK" : c == ONLINE_FRONT ? "ONLINE_FRONT" : "ON_SEGMENT"); }
template <class K> CCW ccw(const Point<K> &p0, const Point<K> &p1, const Point<K> &p2) {
Point a= p1 - p0, b= p2 - p0;
int s;
if constexpr (is_floating_point_v<K>) s= sgn(sgn(cross(a, b) / sqrt(norm2(a) * norm2(b))));
else s= sgn(cross(a, b));
if (s) return s > 0 ? COUNTER_CLOCKWISE : CLOCKWISE;
if (K d= dot(a, b); sgn(d) < 0) return ONLINE_BACK;
else return sgn(d - norm2(a)) > 0 ? ONLINE_FRONT : ON_SEGMENT;
}
template <class K> struct Line;
template <class K> struct Segment;
template <class K> class Polygon;
template <class K> struct Convex;
template <class K> struct Affine {
K a00= 1, a01= 0, a10= 0, a11= 1;
Point<K> b;
Point<K> operator()(const Point<K> &p) const { return {a00 * p.x + a01 * p.y + b.x, a10 * p.x + a11 * p.y + b.y}; }
Line<K> operator()(const Line<K> &l);
Segment<K> operator()(const Segment<K> &s);
Polygon<K> operator()(const Polygon<K> &p);
Convex<K> operator()(const Convex<K> &c);
Affine operator*(const Affine &r) const { return {a00 * r.a00 + a01 * r.a10, a00 * r.a01 + a01 * r.a11, a10 * r.a00 + a11 * r.a10, a10 * r.a01 + a11 * r.a11, (*this)(r)}; }
Affine &operator*=(const Affine &r) { return *this= *this * r; }
};
template <class K> Affine<K> translate(const Point<K> &p) { return {1, 0, 0, 1, p}; }
}
#line 2 "src/Geometry/Point.hpp"
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cassert>
#line 2 "src/Internal/long_traits.hpp"
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<char>{using type= short;};
template<>struct make_long<unsigned char>{using type= unsigned short;};
template<>struct make_long<short>{using type= int;};
template<>struct make_long<unsigned short>{using type= unsigned;};
template<>struct make_long<int>{using type= long long;};
template<>struct make_long<unsigned>{using type= unsigned long long;};
template<>struct make_long<long long>{using type= __int128_t;};
template<>struct make_long<unsigned long long>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
#line 8 "src/Geometry/Point.hpp"
namespace geo {
using namespace std;
struct Visualizer {
ofstream ofs;
Visualizer(string s= "visualize.txt"): ofs(s) { ofs << fixed << setprecision(10); }
friend Visualizer &operator<<(Visualizer &vis, const string &s) { return vis.ofs << s, vis; }
};
template <class K> int sgn(K x) {
if constexpr (is_floating_point_v<K>) {
static constexpr K EPS= 1e-9;
return x < -EPS ? -1 : x > EPS;
} else return x < 0 ? -1 : x > 0;
}
template <class K> K err_floor(K x) {
K y= floor(x);
if constexpr (is_floating_point_v<K>)
if (K z= y + 1, w= x - z; 0 <= sgn(w) && sgn(w - 1) < 0) return z;
return y;
}
template <class K> K err_ceil(K x) {
K y= ceil(x);
if constexpr (is_floating_point_v<K>)
if (K z= y - 1, w= x - z; 0 < sgn(w + 1) && sgn(w) <= 0) return z;
return y;
}
template <class K> struct Point {
K x, y;
Point(K x= K(), K y= K()): x(x), y(y) {}
Point &operator+=(const Point &p) { return x+= p.x, y+= p.y, *this; }
Point &operator-=(const Point &p) { return x-= p.x, y-= p.y, *this; }
Point &operator*=(K a) { return x*= a, y*= a, *this; }
Point &operator/=(K a) { return x/= a, y/= a, *this; }
Point operator+(const Point &p) const { return {x + p.x, y + p.y}; }
Point operator-(const Point &p) const { return {x - p.x, y - p.y}; }
Point operator*(K a) const { return {x * a, y * a}; }
Point operator/(K a) const { return {x / a, y / a}; }
friend Point operator*(K a, const Point &p) { return {a * p.x, a * p.y}; }
Point operator-() const { return {-x, -y}; }
bool operator<(const Point &p) const {
int s= sgn(x - p.x);
return s ? s < 0 : sgn(y - p.y) < 0;
}
bool operator>(const Point &p) const { return p < *this; }
bool operator<=(const Point &p) const { return !(p < *this); }
bool operator>=(const Point &p) const { return !(*this < p); }
bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y); }
bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y); }
Point operator!() const { return {-y, x}; } // rotate 90 degree
friend istream &operator>>(istream &is, Point &p) { return is >> p.x >> p.y; }
friend ostream &operator<<(ostream &os, const Point &p) { return os << "(" << p.x << ", " << p.y << ")"; }
friend Visualizer &operator<<(Visualizer &vis, const Point &p) { return vis.ofs << p.x << " " << p.y << "\n", vis; }
};
template <class K> make_long_t<K> dot(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.x + make_long_t<K>(p.y) * q.y; }
// left turn: > 0, right turn: < 0
template <class K> make_long_t<K> cross(const Point<K> &p, const Point<K> &q) { return make_long_t<K>(p.x) * q.y - make_long_t<K>(p.y) * q.x; }
template <class K> make_long_t<K> norm2(const Point<K> &p) { return dot(p, p); }
template <class K> long double norm(const Point<K> &p) { return sqrt(norm2(p)); }
template <class K> make_long_t<K> dist2(const Point<K> &p, const Point<K> &q) { return norm2(p - q); }
template <class T, class U> long double dist(const T &a, const U &b) { return sqrt(dist2(a, b)); }
enum CCW { COUNTER_CLOCKWISE, CLOCKWISE, ONLINE_BACK, ONLINE_FRONT, ON_SEGMENT };
ostream &operator<<(ostream &os, CCW c) { return os << (c == COUNTER_CLOCKWISE ? "COUNTER_CLOCKWISE" : c == CLOCKWISE ? "CLOCKWISE" : c == ONLINE_BACK ? "ONLINE_BACK" : c == ONLINE_FRONT ? "ONLINE_FRONT" : "ON_SEGMENT"); }
template <class K> CCW ccw(const Point<K> &p0, const Point<K> &p1, const Point<K> &p2) {
Point a= p1 - p0, b= p2 - p0;
int s;
if constexpr (is_floating_point_v<K>) s= sgn(sgn(cross(a, b) / sqrt(norm2(a) * norm2(b))));
else s= sgn(cross(a, b));
if (s) return s > 0 ? COUNTER_CLOCKWISE : CLOCKWISE;
if (K d= dot(a, b); sgn(d) < 0) return ONLINE_BACK;
else return sgn(d - norm2(a)) > 0 ? ONLINE_FRONT : ON_SEGMENT;
}
template <class K> struct Line;
template <class K> struct Segment;
template <class K> class Polygon;
template <class K> struct Convex;
template <class K> struct Affine {
K a00= 1, a01= 0, a10= 0, a11= 1;
Point<K> b;
Point<K> operator()(const Point<K> &p) const { return {a00 * p.x + a01 * p.y + b.x, a10 * p.x + a11 * p.y + b.y}; }
Line<K> operator()(const Line<K> &l);
Segment<K> operator()(const Segment<K> &s);
Polygon<K> operator()(const Polygon<K> &p);
Convex<K> operator()(const Convex<K> &c);
Affine operator*(const Affine &r) const { return {a00 * r.a00 + a01 * r.a10, a00 * r.a01 + a01 * r.a11, a10 * r.a00 + a11 * r.a10, a10 * r.a01 + a11 * r.a11, (*this)(r)}; }
Affine &operator*=(const Affine &r) { return *this= *this * r; }
};
template <class K> Affine<K> translate(const Point<K> &p) { return {1, 0, 0, 1, p}; }
}